Math 572 Rutgers University Spring 23 Prof. Alex Kontorovich
Last time: of lie alogat $G=S l_{2}(R)$
$U(o g) t$ all oder offtential opestiors,
$Z(X(g))=$ center, has invariat diffeerded ops'
Commetes wish reguler rep (beth lift $L_{\text {raght }}$.
f has K-type l if: $f\left(g k_{g}\right)=e^{2 \pi i l \theta} f(g)$, $\forall g \in 6, k_{\theta} \in K=S O(2)$.
generoted oy Casimis C, \longleftarrow 2widarder inuriaut operide
$\left.{ }_{y} C\right|_{G / k}=\Delta=-y^{2}\left(\partial_{k x}+d_{h y}\right)$, for $f\left(n_{x} a_{y} k_{\theta}\right)$
$R=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ (or Cony quet theot in of cordinater
$\& L=\left(\begin{array}{l}0 \\ 1 \\ 10\end{array}\right)$ act as Maass rasing \& fonesing opraters.
${ }^{\lambda}$ in $\operatorname{NAK}_{\text {cords }}$ is: $-y^{2}\left(\partial_{x x}+\lambda_{y y}\right)+y d_{y} \cdot \partial_{\theta}$.

$$
L_{i}^{\left(\frac{1}{2}\right)}-(z-\bar{z}) \partial_{\bar{z}}+\partial_{\theta}
$$

if $\left.L\right|_{k \text { K-tyel }}=-(z-z) d_{\bar{z}}+l$.
$R: K$-tape $l \rightarrow K$-type $l+2$
iP It $f\left(g k_{\theta}\right)=e^{i \theta l} f(g)$, then

$$
(l f)\left(q k_{\theta}\right)=e^{i \theta(l+l)} f(q), \quad \sin \text { with } L
$$

$\left(R_{\text {oval }}\right.$)

$$
l t \rightarrow l-z .
$$

Big Idea: (Gelfand-Gnev-Pialetsk; Shoprov)

$$
\begin{aligned}
& f: \text { Hil } \rightarrow \mathbb{C} \text { How to lift to } G \text { ? } \\
& {[\phi:, \quad G \rightarrow \mathbb{C}: \gamma g \rightarrow f(\underset{\uparrow}{f(\gamma \cdot i)}=f(g \cdot i)}
\end{aligned}
$$

$$
\begin{aligned}
& \phi: r^{G} \rightarrow \mathbb{C}: g \mapsto(\operatorname{Ing} \cdot i)^{R_{2}} f(g \cdot i) \\
& \text { Cet } V_{\phi}=\operatorname{span}_{g \in b}(\pi(9) . \phi \\
& \phi \in l^{2}\left(r^{G}\right) \\
& (\pi(g) . \phi)(f h)=\phi(x h-g) \text {, }
\end{aligned}
$$

$\left(\pi, V_{\phi}\right)$ is an ried G-rep.

$$
\begin{aligned}
& C \phi=\Delta f)=\lambda \phi, \quad \lambda(\pi(g, \phi)=\pi(,) c \phi \\
& =\lambda \cdot \pi(g) \cdot \phi_{1}
\end{aligned}
$$

Converses; if $\left(\pi V V^{b^{2}\left(r^{0}\right)} \quad 13\right.$ an med Gorep, then C acts on V, Schur $\Rightarrow C$ acts by Sclars.

If $\exists \phi \in V^{K}($ then V is called "spherics|").
$\pi(k) \phi=\phi$ 怆 $K_{K} . \quad C \phi=1 \phi \Rightarrow \phi$ is Mass
$\phi\left(y-k_{g}\right)=\phi(g)$. form for T_{1}

Fourier temstorm in K. is $V\left(n_{x} a_{y} k_{\theta}\right)$

$$
9=\sum a_{l} \cdot V_{l}\left(n_{x} a_{y} k_{\theta}\right) \text {, where } V_{l}\left(g k_{b}\right)=e^{2 r i d \theta} V_{l}(g) \text {. }
$$

IL, V is broken mote K-ibotypia components $V_{l} \uparrow$

If f lini $_{R \phi}$ a moddr form, $\phi=y^{R / L} f(x)(z \rightarrow g i)$,

$$
\begin{aligned}
& V_{\varnothing} \\
& { }_{l}^{R Q} \phi=i=1
\end{aligned}
$$

$$
\partial_{\bar{z}} f=0 . \Leftrightarrow f h_{0} r^{r} c_{1}
$$

$146^{\prime} 47$ Bargmam Gelfund-Naimark gave classifrime of cuitingleres of SL(qX).
ly gives rite movels for ecch reps.

$$
f(x+1 n)=\sum a_{n} W_{l_{1},}(y) e(n x) .
$$

$\xi_{\phi} w_{y} V_{\phi} \quad \exists$ rice modeles in whish to calulations E.y. Ire madel: sect

$$
V_{s}=\left\{f: \mathbb{B} \rightarrow \mathbb{C}:\left(\pi\binom{a b}{c d} f\right)(x)=((x+d))^{s} f\left(\frac{a x d s}{c x+d}\right)\right)
$$

$$
\begin{array}{lll}
\int \mid f^{2} c_{\infty} & \forall f \in V_{乡}, & e f=\underbrace{S(1-s) \cdot f .}_{\lambda} \\
B=\left(\begin{array}{ll}
* & * \\
0 & x
\end{array}\right) & \text { "Bael } & \text { of } S L_{2}(T) .
\end{array}
$$

$$
=\left(\begin{array}{ll}
a & b_{1} \\
0 & a^{\prime}
\end{array}\right) \text { rep ot } B \quad X\left(\begin{array}{ll}
a & b \\
0 & a^{\prime}
\end{array}\right)=\binom{s}{a}
$$

$$
\operatorname{Ind}_{b}^{d^{g}}=\{f(g a)=x(a) f(g)\}
$$

$$
G=\bar{N} A N
$$

B.
Back to abeles:

$$
L_{\Delta}\left(G L_{2}(a)\right) L_{2}(A)
$$

Pooed tad dan:

$$
l_{\varphi}\left(G l_{2}(\mathbb{T}) \cdot G L_{p}(\mathbb{R})\right) \times \prod_{p} G l_{2}\left(\tau_{p}\right)
$$

Recall fer $G l_{1}\left(\right.$ a) $G L_{1}($ d $)$, wee had a method to lift X medit dor to w thule der

Lift of Mays form $f(x+i y)$ fer to $G l_{\eta}(\mathbb{A})$ is thriving:

$$
\begin{aligned}
& \phi\binom{\psi}{g}=f\left(x_{\infty}+i_{y_{\infty}}\right) \\
& \forall g \in G l_{2}(\mathbb{A}), \forall \gamma \in G l_{2}(Q), h_{\infty} \in G l_{2}(\mathbb{R}) \\
& h_{p} \in G l_{2}\left(\lambda_{p}\right) \\
& s_{0} \cdot, \quad g=1 \gamma \cdot\left(h_{\infty}, h_{2}, h_{\infty},-1\right) . \\
& \left(\begin{array}{cc}
y_{\infty} & x_{\infty} \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
r_{\infty} & 0 \\
0 & r_{\infty}
\end{array}\right) k_{\infty}
\end{aligned}
$$

When f on $F_{\theta}(N)$ wist central $a_{r} \psi$, heed to be more careful with l its.
Cog,$k)$-module acting at ∞-place, $G L_{2}(A x)$ acting at finite places.
act say dy $\left(I_{\ldots},\left(\begin{array}{ll}p & 0 \\ 0 & 1\end{array}\right), I_{1}\right) \phi=\lambda_{p} \cdot \phi$. This is the Herke operator, so
imeducible adelic representations captre not just epgagatintion of Casimir (at ∞). also capture oll Heelve operatios in one fell suopl s nosp! \& define L-functions, study their FEs...
What about $G_{6} L_{3}$ Gl l_{3}

$$
\begin{aligned}
& f:+G \\
& \text { not atelan! } \\
& \text { KE? }
\end{aligned}
$$

ζ_{1}, ζ_{2},

$$
\begin{aligned}
& \left.\cdots f=\sum_{\gamma \in \sigma\left(a_{2}\right)} \sum_{n_{1}, n_{2}} a_{n_{1}, n_{2}} \cdot W\left(y^{\prime}\right\}\right) e\left(n_{1} x_{1}+n_{2} x_{2}\right) \\
& L(f, s)=\sum \frac{a_{n_{1}},}{n_{1}^{s}}=\prod_{p}\left((- \frac { \alpha _ { p } } { p ^ { s } }) ^ { - 1 } (1 - L _ { p } ^ { - 1 }) ^ { - 1 } \left(\left[\left.\frac{b_{p}}{-1} \right\rvert\,\right.\right.\right.
\end{aligned}
$$

Godervent - Tacpet std - - wadtim.

$$
L(\vec{f}, s)=\left\{\frac{a_{1, n_{2}}}{n_{2}^{s}} .\right.
$$

$$
\begin{aligned}
L\left(\operatorname{sym}^{2} \varphi, s\right) & =\prod_{p}^{\pi}\left(1-\frac{\alpha_{p}^{2}}{p^{s}}\right)\left(1-\frac{\alpha_{p} \beta_{p}}{p^{p}}\right)^{-1}\left(1-\frac{b_{p}^{2}}{p^{2}}\right)^{-1} \\
& =\sum \frac{\alpha_{n}^{2}}{\alpha^{s}}
\end{aligned}
$$

Converse thm $\Rightarrow \operatorname{sym}^{2} \varphi \rightarrow$ for $G l$,

