

$$
\begin{aligned}
& \varphi_{x}(z)=\sum a_{n} N(n) w_{l_{1} n}(y) e e_{n x} \text { on } \Gamma_{1}\left(N D^{2}\right) \\
& \overline{X(n)}=\frac{X(-1) \tau(x)}{D} \sum_{m(0)}^{\prime} \overline{X(n)} e^{\frac{2 \pi i m n}{D}}, \psi(x)=\psi\left(\left(p^{2}\right)\right. \\
& \varphi_{x}(x)=\frac{x(-1) \tau(x)}{D} \sum_{m(0)}^{1} \overline{x(m)} \varphi\left(\left(\begin{array}{cc}
1 & m / 0 \\
0 & 1
\end{array}\right) z\right)
\end{aligned}
$$

Gwhe $D_{s}+l_{m} N=1, l_{i}-\operatorname{rin}_{0}(D) \quad G_{\sim}\left(\begin{array}{cc}0 & -l \\ -m N & s\end{array}\right)$, Last timei ψ is on $r_{0}(\omega)$

$$
\begin{aligned}
& =\frac{x(\mathbb{N}) t(x)^{2}}{D} \cdot \psi_{\bar{x}}(x) .
\end{aligned}
$$

Thun. Assme $a_{n}, \delta_{h}, \exists \lambda^{\prime \prime}, N$ s.t. $\forall(0, N)=1$, $\forall X$ nod $D, \underline{\text { primitive }}, \quad X_{1}\left(x_{s}\right)=(2 \pi)^{-j} r\left(\frac{s+i}{2}\right) r\left(\frac{s-i}{2}\right)\left(\frac{a n d}{n^{s}}\right.$ Las amaly cont, bounted in verstal sitrips, \& $F E \otimes$ Then $\varphi(x)=\sum_{n \geqslant 1} a_{n} U_{1, n}(y) e(n x)$ on $\Gamma_{\theta}(N)$.
Pf: By , muesse Mell, tamstoms, he get $\varphi_{x}(i y)=\frac{x(\mu) \tau^{2}(x)}{D} \psi_{\bar{x}}\left(\frac{i}{\left.x \mu_{0}\right)^{2}}\right)=$

$$
\begin{aligned}
& L^{2}\left(\left(L_{02}\right)^{x}\right) \text {, all } X_{\operatorname{nod}}{ }^{s=S(2)} \text { form an arthomin } \\
& \text { basis for } \uparrow \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& L_{0}^{2}\left((2 / D t)^{x}\right)=x_{0}^{1} \Rightarrow \forall c:(\pi / D)^{x} \rightarrow c^{x}
\end{aligned}
$$

with $\sum_{l \lg }^{\prime} C(A)=0$, we Line:

$$
\begin{aligned}
& \sum_{l(0)}^{\prime} c(A) \psi\left(\left(\begin{array}{ll}
1 & l / 0 \\
0 & 1
\end{array}\right) t\right)=\sum_{\ell(0)}^{C} C(l) \psi\left(\begin{array}{ccc}
0 & l \\
-\operatorname{con} & s
\end{array}\right)\left(\begin{array}{ll}
l & l \\
0 & 1 \\
0 & 1
\end{array}\right) \\
& \text { Fix } r \in\left(\mathbb{Z}\left(\frac{\partial}{2}\right)^{x}, \quad \text { set } C(l)=\left\{\begin{array}{cl}
1 & \text { lir }(D) . \\
-1 & l=r(D) \\
0 & \text { else. }
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \psi\left(\left(\begin{array}{cc}
D & -r \\
-m N & s
\end{array}\right)\left(\begin{array}{ll}
1 & r \\
0 & 1
\end{array}\right) x\right)-\psi\left(\left(\begin{array}{ll}
1 r / 0 \\
0 & 1
\end{array}\right) z\right) z H\left(\begin{array}{ll}
1 & 1 / 0 \\
0 & 1
\end{array}\right) z . \\
& =\psi\left(\binom{D r}{\min s}\left(\begin{array}{cc}
1 & -\frac{r}{0} \\
0 & 1
\end{array}\right) z\right)-\psi\left(\left(\begin{array}{cc}
1 & -\infty / p \\
0 & 1
\end{array}\right) z\right) .
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \left.\psi\left(\left(\begin{array}{cc}
0 & -r \\
-m N & s
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{2 r}{b} \\
0 & 1
\end{array}\right) z\right)-\psi\left(\begin{array}{cc}
1 & 2 r / p \\
0 & 1
\end{array}\right) z\right) \\
& =\psi\left(\left(\begin{array}{cc}
0 & r \\
m p
\end{array}\right) z-\psi(z)-\left(\begin{array}{cc}
0 & -r \\
-m N & s
\end{array}\right)^{-1}=\left(\begin{array}{cc}
s & r \\
\operatorname{mN} N
\end{array}\right)\right.
\end{aligned}
$$

This holls at bony as $(D, 2 N)=1$, Dipore

$$
\begin{aligned}
& r \in(\pi / 0)^{x} . \quad \text { Similarly, } \forall(S, 2 N)=1 \text {, } s=\text { prme, } \\
& \left.\left[\psi\left(\begin{array}{cc}
s & -r \\
\text { rNN } & b
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{2 r}{s} \\
0 & 1
\end{array}\right) z \begin{array}{l}
z
\end{array}\right)-\psi\left(\begin{array}{ll}
1 & 2 r / s \\
0 & 1
\end{array}\right) z\right) \\
& \int L=\psi\left(\left(\begin{array}{cc}
s & r \\
\operatorname{mos} & 0
\end{array}\right) x\right)-\psi(x) .
\end{aligned}
$$

$$
\begin{aligned}
& \left.=-\psi\left(\begin{array}{cc}
s & r \\
m n & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -\frac{2 r}{s} \\
8 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & r \\
m n & s
\end{array}\right)\left(\frac{2 r}{1} \frac{2-}{0}\right) z\right)
\end{aligned}
$$

$$
\begin{aligned}
& T \psi\left(\left(\begin{array}{cc}
1 & -2 r / 3 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
b & r \\
\omega N & s
\end{array}\right)\left(\begin{array}{cc}
1 & 2 r \\
0 & 1
\end{array}\right) \psi\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
D & -r \\
-m n & s
\end{array}\right)\left(\begin{array}{cc}
s & r \\
m \mu & D
\end{array}\right) . \\
& \text { Let } \psi_{1}(x)_{i}=\psi\left(\left(\begin{array}{cc}
D & -r \\
-\sin & s
\end{array}\right) z\right)-\psi(z)^{U} \\
& S_{2}(\mathbb{R}) . \quad=\psi_{1}(M x) \text {, where } \\
& \begin{array}{l}
\psi^{*}=\left(\begin{array}{cc}
s & r \\
m N & D
\end{array}\right)\left(\begin{array}{cc}
1 & -\frac{2 r}{s} \\
8 & 1
\end{array}\right)\left(\begin{array}{cc}
D & r \\
m N & s
\end{array}\right)\left(\begin{array}{cc}
1 & -\frac{2 r}{D} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & -\frac{2 r}{D} \\
\frac{2 m N}{s} & -3+\frac{4}{D s}
\end{array}\right) \\
\quad D s-m N_{r}=1, m N_{r}=D s-1
\end{array} \\
& \text { dst } M=1 \quad \text { for } M=-2+\frac{4}{\text { bs }} \in(-2,2) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & M_{S} \text { is ellipitic. } \\
& \left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) \in K=\operatorname{sog}(2)
\end{aligned}
$$

Argee by takion Forrer expension of ψ_{1} aboet fixed boit of $M . \Rightarrow$ Fourier cobff's ane all O. $\left(\& \begin{array}{llll}\psi_{1} & \text { in } & \text { uspidal }\end{array}\right)$

$$
\Rightarrow \psi\left(\left(\begin{array}{cc}
D & -r \\
-m N & s
\end{array}\right) \neq\right)=\psi(\varkappa)
$$

$\forall D, S$ prime $\&\left(y_{s, 2 X)}\right)=1 \quad \begin{aligned} & D_{s-m N_{r}=1}^{D_{s}=1(N)} .\end{aligned}$
Wanti, 4 ad, $\quad\left(\begin{array}{cc}a & b \\ C N & d\end{array}\right) \in T_{0}(W) ;$

$$
\psi\left(\left(\begin{array}{cc}
a & d \\
c N & d
\end{array}\right) x\right)=\psi(x), \quad\left(\Rightarrow \varphi=\psi\binom{1}{\omega_{\mu}}^{a}{ }^{1} b r_{0} \rho_{0}(\mu)\right)
$$

M_{y} Tourier serias of $\psi, \psi\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) z\right)=\psi(z)$.

$$
\left(\begin{array}{ll}
a & 0 \\
c N & \alpha
\end{array}\right)=\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
D & -r \\
-m N & s
\end{array}\right)\left(\begin{array}{ll}
1 & v \\
0 & 1
\end{array}\right)
$$

Can I fund Ledi a rep of?

$$
\begin{aligned}
R H S & =\left(\begin{array}{cc}
D-m N u & -r+u s \\
-m N & s
\end{array}\right)\left(\begin{array}{cc}
1 & v \\
(0) & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{D-m N u}{-m N} & \left(D-m N_{u}\right) V+(-r+u s) \\
-m v N+s
\end{array}\right) ?\left(\begin{array}{cc}
a & \delta \\
-N N
\end{array}\right)
\end{aligned}
$$

set $m=-C_{1}, \quad D+C N u=a$?.
i! 7 ? u st. $D:=a-c N_{u}$ is prime?
Anthm prey of step $C N$, shitt a; (a, $1 d=1$
Ry Droichlet's thm 7 u s.t. $D=a-L N_{u}$ ipher

$$
d=\overline{d v+s,} \text {, is } s^{?}=d-c N_{v},\left(d_{1}(N)=1\right. \text {. }
$$

$\&$ need $s \equiv \bar{D}(\bmod N) \stackrel{\stackrel{\text { Dimallut }}{\Rightarrow}}{\Rightarrow} \mathcal{S}$ prme
Summaryi find u Sit. $D=9-C^{N}=$ =pime
Find V s.t. $\delta=d-c N_{V}$ ipme

$$
\& S_{\equiv} \bar{D}(N) .
$$

then $\psi\left(\left(\left.\begin{array}{ll}a & b \\ a & d\end{array} \right\rvert\, z\right)=\psi\left(\left(\begin{array}{ll}1 & y \\ a & 1\end{array}\right)\left(\begin{array}{ll}D & x \\ \text { ar } & s\end{array}\right)\left(\left.\begin{array}{l}1 \\ \mid\end{array} \right\rvert\, d x\right)\right.\right.$

