Math 572 Rutgers University Spring 23 Prof. Alex Kontorovich
Last timei Selbery $1 / 4$ Canj:
if $\varphi^{x c}$ is a Manss form or Congrence
Soby, ot $S C_{2}(\mathbb{E})$, then $\lambda_{\varphi}=\frac{1}{4}\left(\right.$ whe $\left.\Delta \varphi-\lambda_{\varphi} \cdot \varphi\right)$
Pf for $\Gamma=\operatorname{Sl}_{2}(2)$ ie. level L: let φ be a

$$
\begin{aligned}
& =\int_{\frac{1}{2}} \int_{\text {Dưb }}|\nabla y|^{2} d x d y \\
& \geq\left.\frac{1}{2} \int_{\frac{\sqrt{3}}{2}}^{\infty} \int_{-1 / 2}^{12}| | y\right|^{2} d x d \\
& \nabla_{\varphi}=\sum_{n \geqslant 1}\left(a_{n}(y) \cdot 2 \pi \pi_{n}+a_{n}^{\prime}(y)\right) e(n x) \text {. } \\
& \left.\int_{0}^{1} \mid \nabla \varphi^{2}\right)^{2}=\sum_{n \geqslant 1}^{n \geqslant 1}\left|a_{n}(y) \cdot 2 \pi \pi_{n}+a_{n}^{1}(y)\right|^{2} \quad(\text { Paseal }) \\
& \geq \sum_{n \geq 1}\left|a_{n}(y)\right|^{2} 4 \pi^{2} n^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \geq \sqrt{\sum_{n \geq 1}\left|a_{n}(4)\right|^{2}\left(4 \pi^{2}\right)} \cdot=_{4 \pi} \pi_{-1 / 2}^{1 / 2}|\varphi|^{2} d x \\
& \left.\lambda\left||\varphi|^{2} \geq \frac{4 \pi}{2} \int_{\sqrt{3}}^{2} \int_{-1 / 2}^{12}\right| \varphi\right|^{2} d x d y\left(\frac{\sqrt{3}}{2 y}\right)^{2} \quad y>\frac{\sqrt{3}}{2} \\
& =\frac{3}{2} \pi^{2} \cdot \int_{\left(\frac{\sqrt{3}}{2}\right.}^{\infty} \int_{-1 \prime y}^{\prime \prime 2}|\varphi|^{2} \frac{d x d y}{y^{2}} \\
& \geq \frac{3}{2} \pi^{2}\|\varphi\|^{2} \quad \Rightarrow \quad \lambda \geq \frac{3}{2} \pi^{2} \simeq 14.8 . \\
& \text { (troth: } \left.\quad \lambda_{1}=91 \ldots\right)_{4 \times r^{2} r \simeq 9} \geq \frac{1}{4} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Converse, Wat it we have a seqemse } a: N \rightarrow C \text {, }
\end{aligned}
$$

Sit. $\quad a_{n}<_{n}{ }^{c},\left(\Rightarrow \quad L(s)=\sum \frac{q_{n}}{n^{s}}\right.$ conveses $\left.\operatorname{Ke}_{e} s \gg\right)$ \& suppole $L(s)$ has anaptir but to \mathbb{C}, bounied in ertral stips, $\sigma_{1} \leq \operatorname{Res} \leq \sigma_{2}$, $L^{\exists r} \frac{1}{t} t \quad N(s)=(2 \pi)^{-s} r\left(\frac{s, i r}{2}\right) r\left(\frac{s-i r}{2}\right) L(s)=N(1-s)$.
Gumese
$\frac{\operatorname{lnmin}}{1}$ Then $\varphi(x+i y) i=\sum_{n \geqslant 1} a_{n} y^{\prime \prime 2} K_{i r}(2 \pi n y) e(n x)$ 3 a Maas) form. for $\mathrm{SL}_{2}(\pi)$.
pfi Need $A \varphi=\lambda_{\varphi p,}, \quad \varphi(x+i y)=\varphi(x+1+i y)$.
Ned! $\frac{\varphi\left(\frac{-1}{x+i,}\right)}{\text { Ned }}=\varphi(x+i y)$??,? $\Gamma=\left\langle\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)\right\rangle$.

$$
\begin{aligned}
& =\sum_{n \geq 1} a_{n} y^{1 k_{2}} K_{i r}\left(2 \pi_{n y}\right) \\
& \text { YOTOK }=\frac{1}{2 \pi \int_{(2)}} \Lambda(t-s) y^{\frac{1}{2}-s} d s
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2 \pi} \int_{(c)} \Lambda(s)\left(\frac{1}{y}\right)^{\frac{1}{2}-s} d s=\varphi\left(\frac{i}{y}\right)=\varphi(\lambda)
\end{aligned}
$$

Let $\psi(z)=\varphi(z)-\varphi\left(\frac{-1}{z}\right)$.
Clami $\Delta \psi=\lambda \psi!\Delta \psi=\Delta \varphi-\Delta \varphi \cdot s$

$$
\begin{aligned}
&=\lambda \varphi-\lambda \varphi \cdot s=\lambda \psi_{(i y)}^{V} \\
& \equiv 0, \Rightarrow \psi \equiv 0 . \quad \varphi(z)=\varphi\left(\frac{1}{\varepsilon}\right)
\end{aligned}
$$

Consiver φ a Nasass cux form on $P_{b}(N)<r(1)$.
Wot cam ne do?

$$
\binom{11}{0}^{k}=\left\{\left(\begin{array}{c}
x \\
0 \\
0
\end{array}\right)\right.
$$

$$
\varphi(z)=\sum_{n=1} a_{n} y^{1 / 2} k_{1 r}(2(2 n, 1) e(n x) .
$$

Viavarimat under $T=\left(\begin{array}{l}1 \\ 0\end{array} 1\right), ~ \checkmark A \varphi=1 \varphi$.
Other gluators of $r_{0}(N)$?
Sme as before \Rightarrow

$$
\left.\Lambda_{i s, s)}^{(u s i t e}\right)=\int_{0}^{\infty} \varphi(i y) y^{s-1 / 2} \frac{d y}{4}=(2 \pi)^{-} r i r L(\varphi, s) .
$$ analitie cont is fee. FE?

Instend of $S=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, ue $\omega_{N}=\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)<C_{\text {ay }}$

$$
\omega_{N}(x)=\frac{1}{N z} B_{\mu}+\omega_{N} \notin S C_{2}(\theta), \omega_{N} \notin \Gamma_{v}(\omega) .
$$

$B+\frac{\text { Clami }}{U}$

Let $\psi(z):=\varphi\left(\frac{\frac{-1}{N z}}{\omega_{N} z}\right)^{\frac{-E}{\omega_{1}}} C_{\text {a,mi }}$
ψ is allo Manss curptorm for $\Gamma_{6}(N)$.

$$
\begin{aligned}
& \Delta \psi=\lambda \psi \cdot \sqrt{ }, \psi\left(\gamma^{\delta^{0}(\omega)}=\varphi\left(\omega_{N} \gamma z\right)\right. \\
& \omega_{N} \gamma \phi_{N}^{1}=\gamma_{1}, \omega_{N} \quad=\varphi\left(\gamma_{1} \omega_{\mu} z\right)=\psi(z) . \\
& =\sum_{n \geq 1} a_{n}\left(\frac{y}{N\left(x^{2}+y\right)}\right)^{1 / 2} K_{1}\left(2 \pi n \frac{y}{\beta\left(x^{2}+y_{y}\right)}\right) e(n t) \text {. }
\end{aligned}
$$

Instexd: $\psi(z)=\sum_{n \geqslant 1} b_{n} y^{\prime \prime L} K(2 \pi n-1) e(n x)$.

$$
\begin{aligned}
& \int_{0}^{\infty} \varphi(i y) y^{s^{-1 / 2}} \frac{d y}{y}=N(\varphi, s), \\
& y=\frac{1}{N u}, \quad \frac{d y}{y}=\frac{-1}{\theta_{u}^{x}} d u \cdot N_{x}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{L s}{N} \int_{0}^{\infty} \underbrace{\varphi\left(\frac{i}{N u}\right)}_{\psi(i u)}(N i)^{\frac{1}{2}-s} \frac{d u}{u} \\
& \sqrt{N^{\frac{1-\xi}{2}} N(\psi, 1-s),}, N^{\frac{s}{2}} \Lambda(\varphi, s)
\end{aligned}
$$

Can we reese this ryument I, ie before? ip assume $a \quad \delta: i N \rightarrow 4, \quad a_{n}, b_{n}<_{n}{ }^{c}$.

$$
L_{1}(s)=\sum \frac{a_{n}}{n^{s}}, \quad L_{2}(s)=\sum \frac{\delta_{n}}{n^{s}}, \quad \text { alnalydz }
$$

Con I cancluate that $\varphi(x):=\sum a_{4} y^{\prime \prime 2} K()$ e($\left.1 x\right)$
is moriunt under $T_{0}(N)$?. (\& $\left.\psi=\sum f_{n} \ldots\right)$.
How to quatre glenextrs of r_{0} wi??
Ned, W how not jut one FE, red $^{\text {Ned }}$
"Twisted" FEss: Need x know tat Primitive Dir cher X conductor $D,(D, N)=1$,

Next then How to prove FE for ?

