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My research interests are in discrete mathematics, which includes both combinatorics and

graph theory. I am particularly interested in questions where probability may be introduced

either via using probabilistic tools to tackle deterministic problems or taking classical determin-

istic results and examining their behavior in a random setting. I also hope to expand my work

to combinatorial problems that can be tackled with other non-combinatorial tools, for example,

those with connections to model theory. In this statement I focus on the work I have done

during my graduate career. The first problem takes a classical graph theoretic result and now

asks the same question of the Erdős-Rényi random graph. The second is solely focused on a

facet of the behavior of the Erdős-Rényi random graph. The final result diverges from the first

two and provides a counter-example to an extension of the union-closed sets conjecture — an

open problem in extremal combinatorics.

STRUCTURE OF THE LARGEST SUBGRAPHS OF Gn,p WITH A GIVEN
MATCHING NUMBER

This is joint work with my advisor Jeff Kahn; a preliminary manuscript should be available

soon.

Recall that the matching number of a graph G is the size of a largest set of disjoint edges and

is denoted ν(G). We say the size of a graph is the number of edges. In what follows “largest”

will refer to the size of the graph. Let us say a graph G has the EG Property if for each k every

largest subgraph with matching number k has one of two forms:

(a) All edges are within a set of vertices of size 2k + 1.

(b) All edges are incident to a set of vertices of size k.

In 1959, Erdős and Gallai proved the following theorem in [9].

Theorem 1. Kn has the EG Property.

Erdős conjectured that this result can be extended from Kn to K =
([n]
l

)
for all l.

Conjecture 1. (Erdős’ Matching Conjecture) The largest subhypergraphs of K =
([n]
l

)
with

matching number k have max
{(l(k+1)−1

l

)
,
(
n
l

)
−
(
n−k
l

)}
hyperedges.

The case l = 2 is Theorem 1. The conjecture has also been proved for l = 3 [11, 12, 21] and

when k is not too close to n/l [11, 15]. Note that as k changes the optimal configuration shifts

between two forms.

Result: In [17], I showed two regimes of p where Theorem 1 can be extended to Gn,p (the usual

Erdős-Rényi random graph) and one where it cannot.

Theorem 2. If p ≥ 8 logn
n or p� 1/n, then with high probability 1 Gn,p has the EG Property.

Furthermore, if β/n < p < γ logn
n , where γ < 1/3 and β > 4 log 2 then w.h.p. Gn,p does not

have the EG Property.

1With high probability (“w.h.p.”) means with probability tending to 1 as n→∞

www.math.rutgers.edu/ ∼ajr224



Abigail Raz 2/6

Theorem 2 gives a good rough understanding of the ranges of p where we do or do not expect

the EG-property. The most interesting part of the argument is for the upper range, where the

proof uses the Tutte-Berge formula together with various probabilistic arguments and tools. In

the middle range we show that the EG property fails at k = ν(Gn,p). Further details on the

proof can be found in my unabridged research statement.

Future Work: Going forward, I would like to close the two gaps for p in Theorem 2. I also

wish to understand, in the range where Gn,p does not have the EG-property, what happens

for k other than (and maybe not too close to) ν(Gn,p), since the negative part of the theorem

considers only k = ν(Gn,p). It would also be interesting to see what, if anything, can be said

about the forms of the largest subgraphs with matching number k when Gn,p fails to have the

EG-property.

TIGHT UPPER TAIL BOUNDS FOR THE NUMBER OF CYCLES IN Gn,p

This is joint work with my advisor Jeff Kahn; a preliminary manuscript should be available

soon.

Let G = G(n, p) be the usual (Erdős-Rényi) random graph. For a fixed graph H define

ξH = ξn,pH to be the number of copies of H in G. It is a much studied and surprisingly difficult

problem to understand the upper tail of the distribution of ξH , for example, to estimate

P(ξH > 2EξH). (1)

(The naive first guess, that this probability behaves like exp[−Ω(EξH)], turns out to be far from

the truth.) The best result for general H is due to Janson, Oleszkiewicz, and Ruciński who

proved, in [26], that for any H, p, and η we have

exp[−OH,η(MH(n, p) ln(1/p))] < P(ξH > (1 + η)EξH) < exp[−ΩH,η(MH(n, p))]. (2)

Thus they determined the upper tail up to a factor of ln(1/p) in the exponent. The definition

of MH(n, p) can be found in [26], but we omit it here. The first progress towards closing the

ln(1/p) gap was made by DeMarco and Kahn in [7] and Chatterjee in [3] who independently

closed it for triangles, showing that the lower bound is the truth (up to a constant in the

exponent). Later, in [6], DeMarco and Kahn closed the ln(1/p) gap for cliques. Additionally,

the gap has been closed for all graphs and large p (i.e. p > n−αH ) [4, 20] and so-called strictly

balanced graphs H and low p (i.e p ≤ n−v/e logCh n) [30, 31, 27]. Recently, in [5], Cook and

Dembo closed the gap — including determining the correct constant in the exponent — for

cycles when p� n−1/2 (among other results).

Result: In [18], I closed the gap for all fixed cycles (up to a constant in the exponent) and any

p. Formally, for any fixed l let ξl = ξl(G) be the number of Cl’s (cycles of length l) in G.

Theorem 3. For any fixed l, η > 0, and p ∈ [0, 1],

P(ξl > (1 + η)Eξl) < exp[−Ωη,l(min{n2p2 ln(1/p), nlpl})].

(This matches the lower bound in (2) in the case of cycles — where MCl
(n, p) = n2p2.) The

proof relies on various applications of two standard large deviation bounds. The constant goal
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is to balance the fact that a vertex of large degree may be in many cycles with the fact that the

probability we have many vertices of large degree is small.

Future Work: In the future, a first question is to see if the methods used in our paper can lead

to a simpler proof of the result for cliques found in [6] and potentially extend the methods to

tackle the question of bounding the upper tail of ξH for all fixed regular graphs. In [6], DeMarco

and Kahn conjectured that the lower bound given in [26] is always the truth. However, in [28],

this was recently disproved by Šileikis and Warnke for an infinite family of graphs and p close

to their appearance threshold. In [28] they still conjecture that the lower bound given in [26] is

the truth for any strictly balanced graph or with the additional assumption that p is sufficiently

above the appearance threshold. Additionally, they leave open the question of formulating a

new upper tail conjecture for graphs which are not strictly balanced.

A COUNTER-EXAMPLE TO AN EXTENSION OF THE UNION-CLOSED SETS
CONJECTURE

We say a family of sets, A, is union-closed if for all A,B ∈ A we have A ∪ B ∈ A. The

union-closed sets conjecture states that if a finite family of sets A 6= {∅} is union-closed, then

there is an element which belongs to at least half the sets in A. In 2001, D. Reimer showed in

[24] that the average set size of a union-closed family, A, is at least 1
2 log2 |A|. In order to do

so, he showed that all union-closed families satisfy a particular condition (that we will refer to

as “Reimer’s condition”), which in turn implies the preceding bound. The question of whether

Reimer’s condition alone is enough to imply that there is an element in at least half of the sets

was raised in the context of T. Gowers’ polymath project on the union-closed sets conjecture

[13].

Result: I exhibited a counter-example with ground set {1, . . . , 8} that satisfies Reimer’s condi-

tion, but fails to have an element in at least half the sets. The counter-example is minimal (both

in the size of the ground set and the number of sets in the family) and can be found in [23]. I

generated the counter-example by constructing an auxiliary directed graph and examining how

changes to the potential counter-example affected the degrees of the auxiliary digraph. Using

this one can show that a counter-example exists and easily recover it.

Future Work: It is important to note that this counter-example is very far from union-closed.

In the future, it would be interesting to investigate whether additional counter-examples that

are closer to being union-closed can be obtained by similar methods. I believe this line of inquiry

would be well suited to an undergraduate student, particularly as this could be attacked with

combinatorial machinery combined with clever computer searches.

CONTINUING AND FUTURE WORK

In the previous section I noted a few directions for further research connected to my results.

Here I discuss a couple of additional problems that are also of interest to me.

1. A question in percolation.

In the standard model of percolation theory, we consider the d-dimensional integer lattice

(the graph consisting of the vertex set Zd together with edges between any two points
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with Euclidean distance 1). Percolation theory, generally, examines the behavior of the

random subgraph of Zd where each edge is, independently, “open” with probability p and

“closed” with probability 1−p. A standard first question is “What is the probability that

the origin can reach infinitely many vertices in our random subgraph?”. The following

question concerns only a finite n × m subset of Z2 and instead of choosing edges to be

open or closed, we now assign them directions (thus producing a random directed graph).

Question 1. Take a n×m sublattice of Z2 (e.g. the subgraph induced by all vertices with

coordinates (i, j) where 1 ≤ i ≤ n and 1 ≤ j ≤ m). We randomly assign each edge a

direction. The vertical edges will be assigned “up” with probability 1
2 (and “down” also

with probability 1
2). The horizontal edges will be assigned “right” with probability p (and

“left” with probability 1− p). Let E be the event that there is a directed path from the left

side to the right side. Is P(E) monotone with p?

This question was told to me by Bhargav Narayanan and seems obviously true. Yet,

to my knowledge, it remains open. If this statement is true a next step would be to

more precisely describe the behavior of P(E). Percolation theory contains many similar

questions, and, while some have simple answers, many more remain open.

2. Piercing axis-parallel boxes.

Let D be a family of boxes in Rd with axis-parallel edges. One can ask the following two

basic questions:

(a) What is the maximum number of disjoint boxes (call this νd(D))?

(b) What is the minimum number of points needed to pierce every box (call this τd(D))?

The following is a brief summary of what is known in the deterministic case. A result of

Gallai (see [16]) says that every family of intervals, D, (i.e. boxes in R) have ν1(D) = τ1(D).

In [32] Wegner conjectured that τ2/ν2 is bounded by 2 for families of rectangles (i.e boxes

in R2), while, in [14], Gýarfás and Lehel conjectured that τ2/ν2 is bounded by a constant.

The best known lower bound, τ2 ≥ b5ν2/3c, is attained by a construction due to Fon-Der-

Flaass and Kostochka in [10], while a simple result of Karoyli’s, in [19], shows that for

families of axis-parallel boxes in Rd we have τd ≤ νd(1 + log νd)
d+1. A few recent papers,

such as [22], improved this when every two intersecting boxes intersect at a corner.

While it would be interesting to tackle the deterministic question, one can also investigate

the case of random boxes. Here a random sub-interval of [0,1] is determined by two

random endpoints each chosen independently with respect to the uniform measure on

[0,1]. Thus a d-dimensional random box is the product of d independent random sub-

intervals of [0,1]. For a family of n independently chosen d-dimensional random boxes

we let νd(n) be the largest number of pairwise disjoint boxes and τd(n) be the smallest

number of points needed to pierce every box. In 2001, Coffman, Lueker, Spencer and

Winker, in [8], showed that, w.h.p., for d = 2 we have ν2 = Θ(
√
n) and for d ≥ 3 we have

Ω(
√
n) ≤ νd(n) ≤ O(

√
n logd−1 n). In 2011, in [29], Tran showed that for any fixed d ≥ 2

w.h.p. we have Ωd(
√
n logd/2−1 n) = τd(b) = Od(

√
n logd/2−1 log logn). Furthermore, he

conjectured that the lower bound is the truth. It is unlikely that the methods used in

Tran’s result can be easily extended to a proof of this conjecture; however, it would be

interesting to see a different auxiliary hypergraph than the one used by Tran yields a

better bound.
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