
Chapter 31

Michelle Bodnar, Andrew Lohr

May 9, 2017

Exercise 31.1-1

By the given equation, we can write c = 1 · a + b, with 0 ≥ b < a. By the
definition of remainders given just below the division theorem, this means that
b is the remainder when c is divided by a, that is b = c mod a.

Exercise 31.1-2

Suppose that there are only finitely many primes p1, p2, . . . , pk. Then p =
p1p2 · · · pk + 1 isn’t prime, so there must be some pi which divides it. However,
pi · (p1 · · · pi−1pi+1 · · · pk) < p and p · (p1 · · · pi−1pi+1 · · · pk + 1) > p, so pi can’t
divide p. Since this holds for any choice of i, we obtain a contradiction. Thus,
there are infinitely many primes.

Exercise 31.1-3

a|b means there exists k1 ∈ Z so that k1a = b. b|c means there exists k2 ∈ Z
so that k2b = c. This means that (k1k2)a = c. Since the integers are a ring,
k1k2 ∈ Z, so, we have that a|c.

Exercise 31.1-4

Let g = gcd(k, p). Then g|k and g|p. Since p is prime, g = p or g = 1. Since
0 < k < p, g < p. Thus, g = 1.

Exercise 31.1-5

By Theorem 31.2, since gcd(a, n) = 1, there exist integers p, q so that
pa + qn = 1, so, bpa + bqn = b. Since n|ab, there exists an integer k so that
kn = ab. This means that knp+ pqn = (k + q)pn = b. Since n divides the left
hand side, it must divide the right hand side as well.

Exercise 31.1-6

1

Observe that
(
p
k

)
= p!

k!(p−k)! = p(p−1)···(p−k+1)
k! . Let q = (p−1)(p−2) · · · (p−

k+ 1). Since p is prime, k! 6 |p. However, we know that
(
p
k

)
is an integer because

it is also a counting formula. Thus, k! divides pq. By Corollary 31.5, k!|q. Write
q = ck!. Then we have

(
p
k

)
= pc, which is divisible by p.

By the binomial theorem and the fact that p|
(
p
k

)
for 0 < k < p,

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k ≡ ap + bp(mod p).

Exercise 31.1-7

First, suppose that x = yb + (x mod b), (x mod b) = za + ((x mod b)
mod a), and ka = b. Then, we have x = yka + (x mod b) = (yk + z)a + ((x
mod b) mod a). So, we have that x mod a = ((x mod b) mod a).

For the second part of the problem, suppose that x mod b = y mod b.
Then, by the first half of the problem, applied first to x and then to b, x
mod a = (x mod b) mod a = (y mod b) mod a = y mod a. So, x ≡ y
mod a.

Exercise 31.1-8

We can test in time polynomial in β whether or not a given β-bit number
is a perfect kth power. Then, since two to the βth power is longer than the
number we are given, we only need to test values of k between 2 and β, thereby
keeping the runtime polynomial in β.

To check whether a given number n is a perfect kth power, we will be using
a binary search like technique. That is, if we want to find the k-th root of a
number, we initially know that it lies somewhere between 0 and the number
itself. We then look at the number of the current range of number under con-
sideration, raise it to the kth power in time polynomial in β. We can do this
by the method of repeated squaring discussed in section 31.6. Then, if we get a
number larger than the given number when we perform repeated squaring, we
know that the true kth root is in the lower half of the range in consideration,
if it is equal, it is the midpoint, if larger, it is the upper half. Since each time,
we are cutting down the range by a factor of two, and it is initially a range of
length Θ(2β), the number of times that we need to raise a number the the kth
power is Θ(β). Putting it all together, with the O(β3) time exponentiation, we
get that the total runtime of this procedure is O(β5).

Exercise 31.1-9

For (31.6), we see that a and b in theorem 31.2 which provides a characteri-
zation of gcd appear symmetrically, so swapping the two won’t change anything.

For (31.7), theorem 31.2 tells us that gcd’s are defined in terms of integer
linear combinations. If we had some integer linear combination involving a and

2

b, we can changed that into one involving (-a) and b by replacing the multiplier
of a with its negation.

For (31.8), by repeatedly applying (31.6) and (31.7), we can get this equality
for all four possible cases based on the signs of both a and b.

For(31.9), consider all integer linear combinations of a and 0, the thing we
multiply by will not affect the final linear combination, so, really we are just
taking the set of all integer multiples of a and finding the smallest element.
We can never decrease the absolute value of a by multiplying by an integer
(|ka| = |k||a|), so, the smallest element is just what is obtained by multiplying
by 1, which is |a|.

For (31.10), again consider possible integer linear combinations na + mka,
we can rewrite this as (n+km)a, so it has absolute value |n+km||a|. Since the
first factor is an integer, we can’t have it with a value less than 1 and still have
a positive final answer, this means that the smallest element is when the first
factor is 1, which is achievable by setting n = 1,m = 0.

Exercise 31.1-10

Consider the prime factorization of each of a, b, and c, written as a =
p1p2 . . . pk where we allow repeats of primes. The gcd of b and c is just the
product of all pi such that pi appears in both factorizations. If it appears multi-
ple times, we include it as many times as it appears on the side with the fewest
occurrences of pi. (Explicitly, see equation 31.13 on page 934). To get the gcd
of gcd(b, c) and a, we do this again. Thus, the left hand side is just equal to the
intersection (with appropriate multiplicities) of the products of prime factors
of a, b, and c. For the right hand side, we consider intersecting first the prime
factors of a and b, and then the prime factors of c, but since intersections are
associative, so is the gcd operator.

Exercise 31.1-11

Suppose to a contradiction that we had two different prime decomposition.
First, we know that the set of primes they both consist of are equal, because if
there were any prime p in the symmetric difference, p would divide one of them
but not the other. Suppose they are given by (e1, e2, . . . , er) and (f1, f2, . . . , fr)
and suppose that ei < fi for some position. Then, we either have that pei+1

i

divides a or not. If it does, then the decomposition corresponding to {ei} is
wrong because it doesn’t have enough factors of pi, otherwise, the one corre-
sponding to {fi} is wrong because it has too many.

Exercise 31.1-12

Standard long division runs in O(β2), and one can easily read off the re-
mainder term at the end.

3

Exercise 31.1-13

First, we bump up the length of the original number until it is a power of two,
this will not affect the asymptotics, and we just imagine padding it with zeroes
on the most significant side, so it does not change its value as a number. We
split the input binary integer, and split it into two segments, a less significant
half ` and an more significant half m, so that the input is equal to m2β/2 + `.
Then, we recursively convert m and ` to decimal. Also, since we’ll need it later,
we compute the decimal versions of all the values of 22

i

up to 2β . There are
only lg(β) of these numbers, so, the straightforward approach only takes time
O(lg2(β)) so will be overshadowed by the rest of the algorithm. Once we’ve
done that, we evaluate m2β/2 + `, which involves computing the product of two
numbers and adding two numbers, so, we have the recurrence

T (β) = 2T (β/2) +M(β/2)

Since we have trouble separating M from linear by a nε for some epsilon, the
analysis gets easier if we just forget about the fact that the difficulty of the
multiplication is going down in the subcases, this concession gets us the runtime
that T (β) ∈ O(M(β) lg(β)) by master theorem.

Note that there is also a procedure to convert from binary to decimal that
only takes time Θ(β), instead of the given algorithm which is Θ(M(β) lg(β)) ∈
Ω(β lg(β)) that is rooted in automata theory. We can construct a deterministic
finite transducer between the two languages, then, since we only need to take as
many steps as there are bits in the input, the runtime will be linear. We would
have states to keep track of the carryover from each digit to the next.

Exercise 31.2-1

First, we show that the expression given in equation (31.13) is a common
divisor. To see that we just notice that

a = (

r∏
i=1

p
ei−min(ei,fi)
i)

r∏
i=1

p
min(ei,fi)
i

and

b = (

r∏
i=1

p
fi−min(ei,fi)
i)

r∏
i=1

p
min(ei,fi)
i

Since none of the exponents showing up are negative, everything in sight is
an integer.

Now, we show that there is no larger common divisor. We will do this by
showing that for each prime, the power can be no higher. Suppose we had some
common divisor d of a and b. First note that d cannot have a prime factor that
doesn’t appear in both a or b, otherwise any integer times d would also have
that factor, but being a common divisor means that we can write both a and
b as an integer times d. So, there is some sequence {gi} so that d =

∏r
i=1 p

gi
i .

4

Now, we claim that for every i, gi ≤ min(ei, fi). Suppose to a contradiction
that there was some i so that gi > min(ei, fi). This means that d either has
more factors of pi than a or than b. However, multiplying integers can’t cause
the number of factors of each prime to decrease, so this is a contradiction, since
we are claiming that d is a common divisor. Since the power of each prime in d
is less than or equal to the power of each prime in c, we must have that d ≤ c.
So, c is a GCD.
Exercise 31.2-2

We’ll create a table similar to that of figure 31.1:
a b ba/bc d x y

899 493 1 29 -6 11
493 406 1 29 5 -6
406 87 4 29 -1 5
87 58 1 29 1 -1
58 29 2 29 0 1
29 0 - 29 1 0

Thus, (d, x, y) = (29,−6, 11).

Exercise 31.2-3

Let c be such that a = cn+(a mod n). If k = 0, it is trivial, so suppose k <
0. Then, EUCLID(a+kn,n) goes to line 3, so returns EUCLID(n, a mod n).
Similarly, EUCLID(a, n) = EUCLID((a mod n) + cn, n) = EUCLID(n, a
mod n). So, by correctness of the Euclidean algorithm,

gcd(a+ kn, n) = EUCLID(a+ kn, n)

= EUCLID(n, a mod n)

= EUCLID(a, n)

= gcd(a, n)

Exercise 31.2-4

Algorithm 1 ITERATIVE-EUCLID(a,b)

1: while b > 0 do
2: (a, b) = (b, a mod b)
3: end while
4: return a

Exercise 31.2-5

We know that for all k, if b < Fk+1 < φk+1/
√

5, then it takes fewer than k

steps. If we let k = logφ b + 1, then, since b < φlogφ b+2/
√

5 = φ2

√
5
· b, we have

that it only takes 1 + logφ(b) steps.

5

We can improve this bound to 1+logφ(b/ gcd(a, b)). This is because we know
that the algorithm will terminate when it reaches gcd(a, b). We will emulate the
proof of lemma 31.10 to show a slightly different claim that Euclid’s algorithm
takes k recursive calls, then a ≥ gcd(a, b)Fk+2 and b ≥ gcd(a, b)Fk+!. We will
similarly do induction on k. If it takes one recursive call, and we have a > b,
we have a ≥ 2 gcd(a, b) and b = gcd(a, b).

Now, suppose it holds for k − 1, we want to show it holds for k. The
first call that is made is of EUCLID(b, a mod b). Since this then only needs
k − 1 recursive calls, we can apply the inductive hypothesis to get that b ≥
gcd(a, b)Fk+1 and a mod b ≥ gcd(a, b)Fk. Since we had that a > b, we have
that a ≥ b+ (a mod b) ≥ gcd(a, b)(Fk+1 + Fk) = gcd(a, b)Fk+2 completing the
induction.

Since we have that we only need k steps so long as b < gcd(a, b)Fk+1 <
gcd(a, b)φk+1. we have that logφ(b/ gcd(a, b)) < k+ 1. This is satisfied if we set
k = 1 + logφ(b/ gcd(a, b))

Exercise 31.2-6

Since Fk+1 mod Fk = Fk−1 we have gcd(Fk+1, Fk) = gcd(Fk, Fk−1). Since
gcd(2, 1) = 1 we have that gcd(Fk+1, Fk) = 1 for all k. Moreover, since Fk is
increasing, we have bFk+1/Fkc = 1 for all k. When we reach the base case of
the recursive calls to EXTENDED-EUCLID, we return (1, 1, 0). The following
returns are given by (d, x, y) = (d′, y′, x′ − y′). We will show that in general,
EXTENDED-EUCLID(Fk+1, Fk) returns (1, (−1)k+1Fk−2, (−1)kFk−1). We have
already shown d is correct, and handled the base case. Now suppose the claim
holds for k − 1. Then EXTENDED-EUCLID(Fk+1, Fk) returns (d′, y′, x′ − y′)
where d′ = 1, y′ = (−1)k−1Fk−2, x′ = (−1)kFk−3, so the algorithm returns

(1, (−1)k−1Fk−2, (−1)kFk−3 − (−1)k−1Fk−2) = (1, (−1)k+1Fk−2, (−1)k(Fk−3 + Fk−2)

= (1, (−1)k+1Fk−2, (−1)kFk−1)

as desired.

Exercise 31.2-7

To show it is independent of the order of its arguments, we prove the fol-
lowing swap property, for all a, b, c, gcd(a, gcd(b, c)) = gcd(b, gcd(a, c)). By
applying these swaps in some order, we can obtain an arbitrary ordering on the
variables (the permutation group is generated by the set of adjacent transposi-
tions). Let ai be the power of the ith prime in the prime factor decomposition
of a, similarly define bi and ci. Then, we have that

6

gcd(a, gcd(b, c)) =
∏
i

p
min(ai,min(bi,ci))
i

=
∏
i

p
min(ai,bi,ci)
i

=
∏
i

p
min(bi,min(ai,ci))
i

= gcd(b, gcd(a, c))

To find the integers {xi} as described in the problem, we use a similar
approach as for EXTENDED-EUCLID.
Exercise 31.2-8

From the gcd interpretation given in equation (31.13), it is clear that lcm(a1, a2) =
a1·a2

gcd(a1,a2)
. More generally, lcm(a1, . . . , an) = a1···an

gcd(···(gcd(gcd(a1,a2),a3),...),an) . We

can compute the denominator recursively using the two-argument gcd opera-
tion. The algorithm is given below, and runs in O(n) time.

Algorithm 2 LCM(a1, . . . , an)
x = a1
g = a1
for i = 2 to n do

x = x · ai)
g = gcd(g, ai)

end for
return x/g

Exercise 31.2-9

For two numbers to be relatively prime, we need that the set of primes
that occur in both of them are disjoint. Multiplying two numbers results in
a number whose set of primes is the union of the two numbers multiplied.
So, if we let p(n) denote the set of primes that divide n. By testing that
gcd(n1n2, n3n4) = gcd(n1n3, n2n4) = 1. We get that (p(n1) ∪ p(n2)) ∩ (p(n3) ∪
(n4)) = (p(n1)∪p(n3))∩(p(n2)∪(n4)) = ∅. Looking at the first equation, it gets
us that p(n1)∩ p(n3) = p(n1)∩ p(n4) = p(n2)∩ p(n3) = p(n2)∩ p(n4) = ∅. The
second tells, among other things, that p(n1) ∩ p(n2) = p(n3) ∩ p(n4) = ∅. This
tells us that the sets of primes of any two elements are disjoint, so all elements
are relatively prime.

A way to view this that generalizes more nicely is to consider the complete
graph on n vertices. Then, we select a partition of the vertices into two parts.
Then, each of these parts corresponds to the product of all the numbers cor-
responding to the vertices it contains. We then know that the numbers that

7

any pair of vertices that are in different parts of the partition correspond to
will be relatively prime, because we can distribute the intersection across the
union of all the prime sets in each partition. Since partitioning into two parts is
equivalent to selecting a cut, the problem reduces to selecting lg(k) cuts of Kn

so that every edge is cut by one of the cuts. To do this, first cut the vertex set
in as close to half as possible. Then, for each part, we recursively try to cut in
in close to half, since the parts are disjoint, we can arbitrarily combine cuts on
each of them into a single cut of the original graph. Since the number of time
you need to divide n by two to get 1 is blg(n)c, we have that that is the number
of times we need to take gcd.

Exercise 31.3-1

+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

·5 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Then, we can see that these are equivalent under the mapping α(0) = 1,
α(1) = 3, α(2) = 4, α(3) = 2.

Exercise 31.3-2

The subgroups of Z9 and {0}, {0, 3, 6}, and Z9 itself. The subgroups of Z∗13
are {1}, {1, 3, 9}, {1, 3, 4, 9, 10, 12}, {1, 5, 8, 12}, {1, 12} and Z∗13 itself.

Exercise 31.3-3

Since S was a finite group, every element had a finite order, so, if a ∈ S′,
there is some number of times that you can add it to itself so that you get the
identity, since adding any two things in S′ gets us something in S′, we have that
S′ has the identity element. Associativity is for free because is is a property
of the binary operation, no the space that the operation draws it’s arguments
from. Lastly, we can see that it contains the inverse of every element, because
we can just add the element to itself a number of times equal to one less than
its order. Then, adding the element to that gets us the identity.

Exercise 31.3-4

8

The only prime divisor of pe is p. From the definition of the Euler phi
function, we have

φ(pe) = pe
(

1− 1

p

)
= pe−1(p− 1).

Exercise 31.3-5

To see this fact, we need to show that the given function is a bijection. Since
the two sets have equal size, we only need to show that the function is onto.
To see that it is onto, suppose we want an element that maps to x. Since Z∗n
is a finite Abelian group by theorem 31.13, we can take inverses, in particu-
lar, there exists an element a−1 so that aa−1 = 1 mod n. This means that
fa(a−1x) = aa−1x mod n = (aa−1 mod n)(x mod n) = x mod n. Since we
can find an element that maps to any element of the range and the sizes of
domain and range are the same, the function is a bijection. Any bijection from
a set to itself is a permutation by definition.

Exercise 31.4-1

First, we run extended Euclid on 35, 50 and get the result (5,−7, 10). Then,
our initial solution is −7 ∗ 10/5 = −14 = 36. Since d = 5, we have four other
solutions, corresponding to adding multiples of 50/5 = 10. So, we also have
that our entire solution set is x = {6, 16, 26, 36, 46}.

Exercise 31.4-2

If ax ≡ ay mod n then a(x− y) ≡ 0 mod n. Since gcd(a, n) = 1, n doesn’t
divide a unless n = 1, in which case the claim is trivial. By Corollary 31.5,
since n divides a(x− y), n divides x− y. Thus, x ≡ y mod n. To see that the
condition gcd(a, n) is necessary, let a = 3, n = 6, x = 6, and y = 2. Note that
gcd(a, n) = gcd(3, 6) = 3. Then 3 · 6 ≡ 3 · 2 mod 6, but 6 6= 2 mod 6.

Exercise 31.4-3

it will work. It just changes the initial value, and so changes the order in
which solutions are output by the program. Since the program outputs all val-
ues of x that are congruent to x0 mod n/b, if we shift the answer by a multiple
of n/b by this modification, we will not be changing the set of solutions that
the procedure outputs.

Exercise 31.4-4

The claim is clear if a ≡ 0 since we can just factor out an x. For a 6= 0,
let g(x) = g0 + g1x + . . . + gt−1x

t−1. In order for f(x) to equal (x − a)g(x)
we must have g0 = f0(−a)−1, gi = (fi − gi−1)(−a)−1 for 1 ≤ i ≤ t − 1 and

9

gt−1 = ft. Since p is prime, Z∗p = {1, 2, . . . , p − 1} so every element, includ-
ing −a, has a multiplicative inverse. It is easy to satisfy each of these equa-
tions as we go, until we reach the last two, at which point we need to satisfy
both gt−1 = (ft−1 − gt−2)(−a)−1 and gt−1 = ft. More compactly, we need
ft = (ft−1 − gt−2)(−a)−1. We will show that this happens when a is a zero of
f .

First, we’ll proceed inductively to show that for 0 ≤ k ≤ t − 1 we have
ak+1gk = −

∑k
i=0 fia

i. For the base case we have ag0 = −f0, which holds.
Assume the claim holds for k − 1. Then we have

ak+1gk = ak+1(fk − gk−1)(−a)−1

= −akfk + akgk−1

= −akfk −
k−1∑
i=0

fia
i

=

k∑
i=0

fia
i

which completes the induction step. Now we show that we can satisfy the
equation given above. It will suffice to show that −atft = at−1(ft−1 − gt−2).

at−1(ft−1 − gt−2) = at−1ft−1 − at−1gt−2

= at−1ft−1 +

t−2∑
i=0

fia
i

=

t−1∑
i=0

fia
i

= −atft

where the second equality is justified by our earlier claim and the last equality
is justified because a is a zero of f . Thus, we can find such a g.

It is clear that a polynomial of degree 1 can have at most 1 distinct zero
modulo p since the equation x = −a has at most 1 solution by Corollary 31.25.
Now suppose the claim holds for t > 1. Let f be a degree t + 1 polynomial.
If f has no zeros then we’re done. Otherwise, let a be a zero of f . Write
f(x) = (x− a)g(x). Then by the induction hypothesis, since g is of degree t, g
has at most t distinct zeros modulo p. The zeros of f are a and the zeros of g,
so f has at most t+ 1 distinct zeros modulo p.

Exercise 31.5-1

10

These equations can be viewed as a single equation in the ring Z+
5 × Z11+,

in particular (x1, x2) = (4, 5). This means that x needs to be the element in
Z55+ that corresponds to the element (4, 5). To do this, we use the process de-
scribed in the proof of Theorem 31.27. We have m1 = 11, m2 = 5, c1 = 11(11−1

mod 5) = 11, c2 = 5(5−1 mod 11) = 45. This means that the corresponding
solution is x = 11 · 4 + 45 · 5 mod 55 = 44 + 225 mod 55 = 269 mod 55 = 49
mod 55. So, all numbers of the form 49 + 55k are a solution.

Exercise 31.5-2

Since 9 · 8 · 7 = 504, we’ll be working mod 504. We also have m1 = 56,
m2 = 63, and m3 = 72. We compute c1 = 56(5) = 280, c2 = 63(7) = 441, and
c3 = 72(4) = 288. Thus, a = 280 + 2(441) + 3(288) mod 504 = 10 mod 504.
Thus, the desired integers x are of the form x = 10 + 504k for k ∈ Z.

Exercise 31.5-3

Suppose that x ≡ a−1 mod n. Also, xi ≡ x mod ni and ai ≡ a mod ni.
What we then want to show is that xi ≡ a−1i mod ni. That is, we want that
aixi ≡ 1 mod ni. To see this, we just use equation 31.30. To get that ax
mod n corresponds to (a1x1 mod n1, . . . , akxk mod nk). This means that 1
corresponds to (1 mod n1, . . . , 1 mod nk). This is telling us exactly what we
needed, in particular, that aixi ≡ 1 mod ni.
Exercise 31.5-4

Let f(x) = f0+f1x+. . .+fdx
d. Using the correspondence of Theorem 31.27,

f(x) ≡ 0 mod n if and only if
∑d
i=0 fijx

i
j ≡ 0 mod nj for j = 1 to k. The

product formula arises by constructing a zero of f via choosing x1, x2, . . . , xk
such that f(xj) ≡ 0 mod nj for each j, then letting x be the number associated
to (x1, . . . , xk).

Exercise 31.6-1

element order

1 1
2 10
3 5
4 5
5 5
6 10
7 10
8 10
9 5
10 2

11

The smallest primitive root is 2, and has the following values for ind11,2(x)

x ind11,2(x)

1 10
2 1
3 8
4 2
5 4
6 9
7 7
8 3
9 6
10 5

Exercise 31.6-2

To perform modular exponentiation by examining bits from right to left,
we’ll keep track of the value of a2

i

as we go. See below for an implementation:

Algorithm 3 MODULAR-EXPONENTIATION-R-to-L(a, b, n)

c = 0
d = 1
s = a
let 〈bk, bk−1, . . . , b0〉 be the binary representation of b
for i = 0 to k do

if bi == 1 then
d = s · d mod n
c = 2i + c

end if
s = s · s mod n

end for
return d

Exercise 31.6-3

Since we know φ(n), we know that aφ(n) ≡ 1 mod n by Euler’s theorem.
This tells us that a−1 = aφ(n)−1 because aa−1 =≡ aaφ(n)−1 ≡ aφ(n) ≡ 1 mod n.
Since when we multiply this expression times a, we get the identity, it is the
inverse of a. We can then compute nφ(n) efficiently, since φ(n) < n, so can be
represented without using more bits than was used to represent n.

Exercise 31.7-1

For the secret key’s value of e we compute the inverse of d = 3 mod φ(n) =
280. To do this, we first compute φ(280) = φ(23)φ(7)φ(5) = 4 · 6 · 4 = 96. Since

12

any number raised to this will be one mod 280, we will raise it to one less than
this. So, we compute

395 ≡ 3(32)47

≡ 3(9(92)23)

≡ 3(9(81(812)11))

≡ 3(9(81(121(1212)5)))

≡ 3(9(81(121(81(812)2

≡ 3 · 9 · 81 · 121 · 81 · 81

≡ 3 · 9 · 121

≡ 187 mod 280

Now that we know our value of e, we compute the encryption of M = 100
by computing 100187 mod 319, which comes out to an encrypted message of 122

Exercise 31.7-2

We know ed = 1 mod φ(n). Since d < φ(n) and e = 3, we have 3d − 1 =
k(p − 1)(q − 1) for k = 1 or 2. We have k = 1 if 3d − 1 < n and k = 2 if
3d − 1 > n. Once we’ve determined k, p + q = n − (3d − 1)/k + 1, so we can
now solve for p+ q in time polynomial in β. Replacing q − 1 by (p+ q)− p− 1
in our earlier equation lets us solve for p in time polynomial in β since we need
only perform addition, multiplication, and division on numbers bounded by n.

Exercise 31.7-3

PA(M1)PA(M2) ≡Me
1M

e
2

≡ (M1M2)e

≡ PA(M1M2) mod n

So, if the attacker can correctly decode 1
100 of the encrypted messages, he

does the following. If the message is one that he can decrypt, he is happy, de-
crypts it and stops. If it is not one that he can decrypt, then, he picks a random
element in Zm, say x encrypts it with the public key, and multiplies that by the
encrypted text, he then has a 1

100 chance to be able to decrypt the new message.
He keeps doing this until he can decrypt it. The number of steps needed follows
a geometric distribution with a expected value of 100. Once he’s stumbled upon
one that he could decrypt, he multiplies by the inverses of all the elements that
he multiplied by along the way. This recovers the final answer, and also can be
done efficiently, since for every x, xn−2 is x−1 by Lagrange’s theorem.

13

Exercise 31.8-1
Suppose that we can write n =

∏k
i=1 p

ei
i , then, by the Chinese remainder the-

orem , we have that Zn ∼= Zpe11 × · · · × Zpe11 . Since we had that n was not a
prime power, we know that k ≥ 2. This means that we can take the elements
x = (pe11 − 1, 1, . . . , 1) and y = (1, pe22 − 1, 1, . . . , 1). Since multiplication in the
product ring is just coordinate wise, we have that the squares of both of these
elements is the all ones element in the product ring, which corresponds to 1 in
Zn. Also, since the correspondence from the Chinese remainder theorem was
a bijection, since x and y are distinct in the product ring, they correspond to
distinct elements in Zn. Thus, by taking the elements corresponding to x and y
under the Chinese remainder theorem bijection, we have that we have found two
squareroots of 1 that are not the identity in Zn. Since there is only one trivial
non-identity squareroot in Zn, one of the two must be non-trivial. It turns out
that both are non-trivial, but that’s more than the problem is asking.

Exercise 31.8-2

Let c = gcd(· · · (gcd(gcd(φ(pe11), φ(pe22)), φ(pe33)), . . .), φ(perr)). Then we have
λ(n) = φ(ee11) · · ·φ(perr)/c = φ(n)/c. Since the lcm is an integer, λ(n)|φ(n).

Suppose p is prime and p2|n. Since φ(p2) = p2(1 − 1
p) = p2 − p = p(p − 1),

we have that p must divide λ(n). however, since p divides n, it cannot divide
n− 1, so we cannot have λ(n)|n− 1.

Now, suppose that is the product of fewer than 3 primes, that is n = pq
for some two distinct primes p < q. Since both p and q were primes, λ(n) =
lcm(φ(p), φ(q)) = lcm(p − 1, q − 1). So, mod q − 1, λ(n) ≡ 0, however, since
n − 1 = pq − 1 = (q − 1)(p) + p − 1, we have that n − 1 ≡ p − 1 mod q − 1.
Since λ(n) has a factor of q − 1 that n− 1 does not, meaning that λ(n) 6 |n− 1.

Exercise 31.8-3

First, we prove the following lemma. For any integers a, b, n, gcd(a, n) ·
gcd(b, n) ≥ gcd(ab, n). Let {pi} be an enumeration of the primes, then, by
Theorem 31.8, there is exactly one set of powers of these primes so that a =∏
i p
ai
i , b =

∏
i p
bi
i , and n =

∏
i p
ni
i .

gcd(a, n) =
∏
i

p
min(ai,ni)
i

gcd(b, n) =
∏
i

p
min(bi,ni)
i

gcd(ab, n) =
∏
i

p
min(ai+bi,ni)
i

14

We combine the first two equations to get:

gcd(a, n) · gcd(b, n) =

(∏
i

p
min(ai,ni)
i

)
·

(∏
i

p
min(bi,ni)
i

)
=
∏
i

p
min(ai,ni)+min(bi,ni)
i

≥
∏
i

p
min(ai+bi,ni)
i

= gcd(ab, n)

Since x is a non-trivial squareroot, we have that x2 ≡ 1 mod n, but x 6= 1
and x 6= n− 1. Now, we consider the value of gcd(x2 − 1, n). By theorem 31.9,
this is equal to gcd(n, x2 − 1 mod n) = gcd(n, 1 − 1) = gcd(n, 0) = n. So, we
can then look at the factorization of x2 − 1 = (x+ 1)(x− 1) to get that

gcd(x+ 1, n) gcd(x− 1, n) ≥ n

However, we know that since x is a nontrivial squareroot, we know that
1 < x < n − 1 so, neither of the factors on the right can be equal to n. This
means that both of the factors on the right must be nontrivial.

Exercise 31.9-1

The Pollard-Rho algorithm would first detect the factor of 73 when it con-
siders the element 84, when we have x12 because we then notice that gcd(814−
84, 1387) = 73.

Exercise 31.9-2

Create an array A of length n. For each xi, if xi = j, store i in A[j]. If j is
the first position of A which must have its entry rewritten, set t to be the entry
originally stored in that spot. Then count how many additional xi’s must be
computed until xi = j again. This is the value of u. The running time is Θ(t+u).

Exercise 31.9-3

Assuming that pe divides n, by the same analysis as sin the chapter, it will
take time Θ(pe/2). To see this, we look at what is happening to the sequence
mod pn.

15

x′i+1 = xi+1 mod pe

= fn(xi) mod pe

= ((x2 − 1) mod n) mod pe

= (x2 − 1) mod pe

= (x′i)
2 − 1 mod pe

= fpe(x
′
i)

So, we again are having the birthday paradox going on, but, instead of hop-
ing for a repeat from a set of size p, we are looking at all the equivalence classes
mod pe which has size pe, so, we have that the expected number of steps be-
fore getting a repeat in that size set is just the squareroot of its size, which is
Θ(
√
pe) = Θ(pe/2).

Exercise 31.9-4

Taking the idea suggested in the exercise statement, suppose that we store
the product of a batch of B consecutive values of xi. We should also recall that
the number of recursive calls that GCD makes is on the order of the log of the
smaller of the two numbers. Since we don’t have control over what value between
0 and n is taken by xi, we should consider that our product of consecutive terms
is larger than n. So, we will make O(β) many recursive calls. We will compute
The B many values of xi all before computing GCD, or checking against k.
However, this means that we need to change line Line 11 of POLLARD-RHO
to checking ig i > k, and setting y equal to xk, which will still be remembered
as it has to of been in the last B computed. The part that needs justification
is that

gcd

(
B−1∏
k=0

y − xi+k, n

)
will be non-trivial iff one of gcd(y − xi+k, n) are nontrivial. We need show that
for all a, b, we have 1 < gcd(ab, n) if and only if 1 < gcd(a, n) or 1 < gcd(b, n).
Once we have that then we will be able to easily show what we originally needed
by induction. For the “if” direction, suppose that, without loss of generality,
d = gcd(a, n) and 1 < d < n. This means that d|n, and d|a, but a|ab, so, by
31.1-3, we have d|ab. Any divisor is a lower bound for the gcd, so we have that
1 < gcd(ab, n). For the “only if” direction, suppose that we have gcd(ab, n) =
d > 1. Then, there is some prime number dividing d. This prime has to belong
to either a or b. So, we have a positive divisor for one of a or b. Since the prime
also divides n, we again get a lower bound on either gcd(a, n) or gcd(b, n). In
picking B, we need to balance the cost of computing gcd more times with the
cost of computing it on larger number. Since we want to think of xi being
(pseudo) randomly distributed, the only control we have on the value of y − xi
is that it is at most n. This means that the value of P in our algorithm can

16

be as large as nB . There was also some extra cost in multiplying together the
values of xi. The fastest we can multiply to m bit numbers is O(m lg(m)), so, to
compute P , we take up time

∑
mO(m lg(m)) = O(Bm lg(m)). We would then

have to balance this cost against the fact that regardless of B, there will be at
most O(lg(n)) many recursive calls to compute the gcd. Another consideration,
not on runtime, but on space complexity is that we need to store the b most
recent values of xi, so that when we try to set y to a new value, the xk that it
is referring to is still stored.

Algorithm 4 BATCH-POLLARD-RHO(n,B)

i = 1
x1 = RANDOM(0, n− 1)
y = x1
k = B
while TRUE do

P = 1
for k = 1 to k = B do

xi+k = (x2i+k−1 − 1) mod n
P = P · (y − xi+k)

end for
i = i+B
d = gcd(P, n)
if d 6= 1 and d 6= n then

print d
end if
if i >= k then

y = xk
k = 2k

end if
end while

Problem 31-1

a. If a and b are both even, then we can write them as a = 2(a/2) and b = 2(b/2)
where both factors in each are integers. This means that, by Corollary 31.4,
gcd(a, b) = 2 gcd(a/2, b/2).

b. If a is odd, and b is even, then we can write b = 2(b/2), where b/2 is an
integer, so, since we know that 2 does not divide a, the factor of two that
is in b cannot be part of the gcd of the two numbers. This means that we
have gcd(a, b) = gcd(a, b/2). More formally, suppose that d = gcd(a, b).
Since d is a common divisor, it must divide a, and so, it must not have any
even factors. This means that it also divides a and b/2. This means that
gcd(a, b) ≤ gcd(a, b/2). To see the reverse, suppose that d′ = gcd(a, b/2),
then it is also a divisor of a and b, since we can just double whatever we need

17

to multiply it by to get b/2. Since we have inequalities both ways, we have
equality.

c. If a and b are both odd, then, first, in analog to theorem 31.9, we show that
gcd(a, b) = gcd(a − b, b). Let d and d′ be the gcd’s on the left and right
respectively. Then, we have that there exists n1, n2 so that n1a + n2b = d,
but then, we can rewrite to get n1(a − b) + (n1 + n2)b = d. This gets
us d ≥ d′. To see the reverse, let n′1, n

′
2 so that n′1(a − b) + n′2b = d′.

We rewrite to get n′1a + (n′2 − n′1)b = d′, so we have d′ ≥ d. This means
that gcd(a, b) = gcd(a − b, b) = gcd(b, a − b). From there, we fall into the
case of part b. This is because the first argument is odd, and the second
is the difference of two odd numbers, hence is even. This means we can
halve the second argument without changing the quantity. So, gcd(a, b) =
gcd(b, (a− b)/2) = gcd((a− b)/2, b).

d. See the algorithm BINARY-GCD(a,b)

Algorithm 5 BINARY-GCD(a,b)

if a mod 2 ≡ 1 then
if b mod 2 ≡ 1 then

return BINARY-GCD((a− b)/2, b)
else

return BINARY-GCD(a, b/2)
end if

else
if b mod 2 ≡ 1 then

return BINARY-GCD(a/2, b)
else

return 2·BINARY-GCD(a/2, b/2)
end if

end if

Problem 31-2

a. We can imagine first writing a and b in their binary representations, and then
performing long division as usual on these numbers. Each time we compute
a term of the quotient we need to perform a multiplication of a and that
term, which takes lg b bit operations, followed by a subtraction from the first
b terms of a which takes lg b bit operations. We repeat this once for each
digit of the quotient which we compute, until the remainder is smaller than
b. There are lg q bits in the quotient, plus the final check of the remainder.
Since each requires lg b bit operations to perform the multiplication and sub-
traction, the method requires O((1 + lg q) lg b) bit operations.

18

b. The reduction requires us to compute a mod b. By carrying out ordinary
“paper and pencil” long division we can compute the remainder. The time to
do this, by part a, is bounded by k(1 + lg q)(lg b) for some constant k. In the
worst case, q has lg a−lg b bits. Thus, we get the bound k(1+lg a−lg b)(lg b).
Next, we compute µ(a, b)−µ(b, a mod b) = (1+lg a)(1+lg b)−(1+lg b)(1+
lg(a mod b). This is smallest when a mod b is small, so we have a lower
bound of (1 + lg a)(1 + lg b)− (1 + lg b). Assuming lg b ≥ 1, we can take c = k
to obtain the desired inequality.

c. As shown in part (b), EUCLID takes at most c(µ(a, b) − µ(b, amodb)) op-
erations on the first recursive call, at most c(µ(b, a mod b) − µ(a mod b, b
mod (a mod b)) operations on the second recursive call, and so on. Summing
over all recursive calls gives a telescoping series, resulting in cµ(a, b)+O(1) =
O(µ(a, b)). When applies to two β-bit inputs the runtime is O(µ(a, b)) =
O((1 + β)(1 + β)) = O(β2).

Problem 31-3

a. Mirroring the proof in chapter 27, we first notice that in order to solve
FIB(n), we need to compute FIB(n − 1) and FIB(n − 2). This means
that the recurrence it satisfies is

T (n) = T (n− 1) + T (n− 2) + Θ(1)

We find it’s solution using the substitution method. Suppose that the Θ(1)
is bounded above by c2 and bounded below by c1. Then, we’ll inductively
assume that T (k) ≤ cFk − c2k for k < n. Then,

T (n) = T (n− 1) + T (n− 2)

≤ cFn−1 − c2(n− 1) + cFn−2 − c2(n− 2) + c2

= cFn − c2n+ (4− n)c2

≤ cFn − c2n

Where the last inequality only holds if we have that n ≥ 4,but since small
values can just be absorbed into the constants, we are allowed to assume this.

To show that T ∈ Ω(Fn), we again use the substitution method. Suppose
that T (k) ≥ cFk + c1k for k < n. Then.

T (n) = T (n− 1) + T (n− 2)

≥ cFn−1 + c1(n− 1) + cFn−2 + c1(n− 2) + c1

= cFn + c1n+ (n− 4)c1

≥ cFn − c1n

Again, this last inequality only holds if we have n ≥ 4, but small cases can
be absorbed into the constants, we may assume that n ≥ 4.

19

b. This problem is the same as exercise 15.1-5.

c. For this problem, we assume that all integer multiplications and additions
can be done in unit time. We will show first that

(
0 1
1 1

)k
=

(
Fk−1 Fk
Fk Fk+1

)
Where we start We will proceed by induction. Then,

(
0 1
1 1

)k+1

=

(
0 1
1 1

)(
0 1
1 1

)k
=

(
0 1
1 1

)(
Fk−1 Fk
Fk Fk+1

)
=

(
Fk Fk−1 + Fk

Fk−1 + Fk Fk + Fk+1

)
=

(
Fk Fk+1

Fk+1 Fk+2

)
completing the induction. Then, we just show that we can compute the
given matrix to the power n − 2 in time O(lg(n)), and look at it’s bottom
right entry. We will use a technique similar to section 31.6, that is, we will
use the idea of iterated squaring in order to obtain high powers quickly.
First, we should note that using 8 multiplications and 4 additions, we can
multiply any two square matrices. This means that matrix multiplications
can be done in constant time, so, we only need to bound the number of those
in our algorithm. Run the algorithm MATRIX-POW(A,n-2) and extract
the bottom left argument. We can see that this algorithm only takes time
O(lg(n)) because in each step, we are halving the value of n, and within each
step, we are only performing a constant amount of work, so the solution to

T (n) = T (n/2) + Θ(1)

is O(lg(n)) by the master theorem.

Algorithm 6 MATRIX-POW(A,n)

if n%2 = 1 then
return A·MATRIX-POW(A2, n−12)

else
return MATRIX-POW(A2, n/2)

end if

20

d. Here, we replace the assumption of unit time additions and multiplications
with having it take time Θ(β) to add and Θ(β2) to multiply two β bit num-
bers. For the naive approach, We are adding a number which is growing
exponentially each time, so, the recurrence becomes

T (n) = T (n− 1) + T (n− 2) + Θ(n)

Which has the same solution 2n. Which can be seen by a substitution argu-
ment. Suppose that T (k) ≤ c2k for k < n. Then,

T (n) = T (n− 1) + T (n− 2) + Θ(lg(n))

≤ c(1

2
+

1

4
)2n + Θ(lg(n))

= c2n − c2n−2 + Θ(lg(n))

≤ c2k

Since we had that it was Ω(2n) in the case that the term we added was Θ(1),
and we have upped this term to Θ(lg(n)), we still have that T (n) ∈ Ω(2n).
This means that T (n) ∈ Θ(2n).

Now, considering the memoized version. We have that our solution has to
satisfy the recurrence

M(n) = M(n− 1) + Θ(n)

This clearly has a solution of
∑n
i=2 n ∈ Θ(n2) by equation (A.11) where it is

trivial to obtain
∫
x dx.

Finally, we reanalyze our solution to part (c). For this, we have that we are
performing a constant number of both additions and multiplications. This
means that, because we are multiplying numbers that have value on the order
of φn, hence have order n bits, our recurrence becomes

P (n) = P (n/2) + Θ(n2)

Which has a solution of Θ(n2).

Though it is not asked for, we can compute Fibonacci in time only Θ(n lg(n))
because multiplying integers with β bits can be done in time β lg(β) using
the fast Fourier transform methods of the previous chapter.

Problem 31-4

a. Since p is prime, Theorem 31.32 implies that Z∗p is cyclic, so it has a generator
g. Thus, g2, g4, . . . , gp−1 are all distinct. Moreover, each one is clearly a

21

quadratic residue so there are at least (p− 1)/2 residues. Now suppose that
a is a quadratic residue and a = g2k+i for some i. Then we must also have
a = x2 for some x, and x = gm for some m, since g is a generator. Thus,
g2m = g2k+i. By the discrete logarithm theorem we must have 2m = 2k + 1
mod φ(p). However, this is impossible since φ(p) = p− 1 which is even, but
2m and 2k + 1 differ by an odd amount. Thus, precisely the elements of the
form g2i for i = 1, 2, . . . , (p− 1)/2 are quadratic residues.

b. If a is a quadratic residue modulo p then there exists x such that a(p−1)/2 =

(x2)(p−1)/2 = xp−1 = 1 =
(
a
p

)
. On the other hand, suppose a is not a

quadratic residue. Then a = g2i+1 for some i and a(p−1)/2 =
(
g2i+1

)(p−1)/2
=(

g(p−1)/2
)2i+1

= (−1)2i+1 = −1 mod p. To see why g(p−1)/2 = −1, recall
that Theorem 31.34 tells us that g = ±1. Since g is a generator, powers of g
are distinct. Since gp−1 = 1, we must have g(p−1)/2 = −1.

To determine whether a given number a is a quadratic residue modulo p, we
simply compute a(p−1)/2 mod p and check if it is 1 or -1. We can do this
using the MODULAR-EXPONENTIATION function, and the number of bit
operations is O((lg p)3).

c. If p = 4k + 3 and a is a quadratic residue then a2k+1 = 1 mod p. Then we
have (ak+1)2 = a2k+2 = aa2k+1 = a, so ak+1 is a square root of a. To find the
square root, we use the MODULAR-EXPONENTIATION algorithm which
has O((lg p)3) bit operations.

d. Run the algorithm of part b repeatedly until a non-quadratic residue is found.
Since only half the elements of Z∗p are residues, after k runs this approach

will find a nonresidue with probability 1−2−k. The expected number of runs
is
∑∞
k=1 k · 2−k = 2, so the expected number of bit operations is O((lg p)3).

22

