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Exercise 26.1-1

To see that the networks have the same maximum flow, we will show that
every flow through one of the networks corresponds to a flow through the other.
First, suppose that we have some flow through the network before applying the
splitting procedure to the anti-symmetric edges. Since we are only changing
one of any pair of anti-symmetric edges, for any edge that is unchanged by the
splitting, we just have an identical flow going through those edges. Suppose
that there was some edge (u, v) that was split because it had an anti-symmetric
edge, and we had some flow, f(u, v) in the original graph. Since the capacity of
both of the two edges that are introduced by the splitting of that edge have the
same capacity, we can set f ′(u, v) = f ′(u, x) = f ′(x, v). By constructing the
new flow in this manor, we have an identical total flow, and we also still have a
valid flow.

Similarly, suppose that we had some flow f ′ on the graph with split edges,
then, for any triple of vertices u, x, v that correspond to a split edge, we must
have that f ′(u, x) = f ′(x, v) because the only edge into x is (u, x) and the only
edge out of x is (x, v), and the net flow into and out of each vertex must be
zero. We can then just set the flow on the unsplit edge equal to the common
value that the flows on (u, x) and (x, v) have. Again, since we handle this on an
edge by edge basis, and each substitution of edges maintains the fact that it is
a flow of the same total, we have that the end result is also a valid flow of the
same total value as the original.

Since we have shown that any flow in one digraph can be translated into a
flow of the same value in the other, we can translate the maximum value flow
for one of them to get that it’s max value flow is ≤ to that of the other, and do
it in the reverse direction as well to achieve equality.

Exercise 26.1-2

The capacity constraint remains the same. We modify flow conservation
so that each si and ti must satisfy the “flow in equals flow out” constraint,
and we only exempt s and t. We define the value of a flow in the multiple-
source, multiple-sink problem to be

∣∣∑m
i=1

∑
v∈V f(si, v)−

∑
v∈V f(v, si)

∣∣. Let
fi =

∑
v∈V f(si, v) −

∑
v∈V f(v, si). In the single-source flow network, set
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f(s, si) = fi. This satisfies the capacity constraint and flow conservation, so it
is a valid assignment. The flow for the multiple-source network in this case is
|f1 + f2 + · · ·+ fm|. In the single-source case, since there are no edges coming
into s, the flow is

∑m
i=1 f(s, si). Since f(s, si) is positive and equal to fi, they

are equivalent.

Exercise 26.1-3

Suppose that we are in the situation posed by the question, that is, that
there is some vertex u that lies on no path from s to t. Then, suppose that we
have for some vertex v, either f(v, u) or f(u, v) is nonzero. Since flow must be
conserved at u, having any positive flow either leaving or entering u, there is
both flow leaving and entering. Since u doesn’t lie on a path from s to t, we
have that there are two cases, either there is no path from s to u or(possibly
and) there is no path from u to t. If we are in the second case, we construct
a path with c0 = u, and ci+1 is an successor of ci that has f(ci, ci+1) being
positive. Since the only vertex that is allowed to have a larger flow in than flow
out is t, we have that this path could only ever terminate if it were to reach
t, since each vertex in the path has some positive flow in. However, we could
never reach t because we are in the case that there is no path from u to t. If
we are in the former case that there is no path from s to u, then we similarly
define c0 = u, however, we let ci+1 be any vertex so that f(ci+1, ci) is nonzero.
Again, this sequence of vertices cannot terminate since we could never arrive at
having s as one of the vertices in the sequence.

Since in both cases, we an always keep extending the sequence of vertices,
we have that it must repeat itself at some point. Once we have some cycle of
vertices, we can decrease the total flow around the cycle by an amount equal
to the minimum amount of flow that is going along it without changing the
value of the flow from s to t since neither of those two vertices show up in the
cycle. However, by decreasing the flow like this, we decrease the total number
of edges that have a positive flow. If there is still any flow passing though u,
we can continue to repeat this procedure, decreasing the number of edges with
a positive flow by at least one. Since there are only finitely many vertices, at
some point we need to have that there is no flow passing through u. The flow
obtained after all of these steps is the desired maximum flow that the problem
asks for.

Exercise 26.1-4

Since f1 and f2 are flows, they satisfy the capacity constraint, so we have
0 ≤ αf1(u, v)+(1−α)f2(u, v) ≤ αc(u, v)+(1−α)c(u, v) = c(u, v), so the new flow
satisfies the capacity constraint. Further, f1 and f2 satisfy flow conservation,
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so for all u ∈ V − {s, t} we have∑
v∈V

αf1(v, u) + (1− α)f2(v, u) = α
∑
v∈V

f1(v, u) + (1− α)
∑
v∈V

f2(v, u)

= α
∑
v∈V

f1(u, v) + (1− α)
∑
v∈V

f2(u, v)

=
∑
v∈V

αf1(u, v) + (1− α)f2(u, v).

Therefore the flows form a convex set.

Exercise 26.1-5

A linear programming problem consists of a set of variables, a linear func-
tion of those variables that needs to be maximized, and a a set of constraints.
Our variables xe will be the amount of flow across each edge e. The function
to maximize is

∑
e leaving s

xe −
∑

e entering s xe. The sum of these flows is

exactly equal to the value of the flow from s to t. Now, we consider constraints.
There are two types of constraints, capacity constraints and flow constraints.
The capacity constraints are just xe ≤ c(e) where ce is the capacity of edge
e. The flow constraints are that

∑
e leaving v

xe −
∑

e entering v xe = 0 for all

vertices v 6= s, t. Since this linear program captures all the same constraints,
and wants to maximize the same thing, it is equivalent to the max flow problem.

Exercise 26.1-6

Use the map to create a graph where vertices represent street intersections
and edges represent streets. Define c(u, v) = 1 for all edges (u, v). Since a
street can be traversed, start off by creating a directed edge in each direction,
then make the transformation to a flow problem with no antiparallel edges as
described in the section. Make the home the source and the school the sink. If
there exist at least two distinct paths from source to sink then the flow will be
at least 2 because we could assign f(u, v) = 1 for each of those edges. However,
if there is at most one distinct path from source to sink then there must exist a
bridge edge (u, v) whose removal would disconnect s from t. Since c(u, v) = 1,
the flow into u is at most 1. We may assume there are no edges into s or out
from t, since it doesn’t make sense to return home or leave school. By flow
conservation, this implies that f =

∑
v∈V f(s, v) ≤ 1. Thus, determining the

maximum flow tells the Professor whether or not his children can go to the same
school.

Exercise 26.1-7

We can capture the vertex constraints by splitting out each vertex into two,
where the edge between the two vertices is the vertex capacity. More formally,
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our new flow network will have vertices {0, 1}×V . It has an edge between 1×v
and 0 × u if there is an edge (v, u) in the original graph, the capacity of such
an edge is just c(v, u). The edges of the second kind that the new flow network
will have are from 0× v to 1× v for every v with capacity l(v). This new flow
network will have 2|V | vertices and have |V |+ |E| edges. Lastly, we can see that
this network does capture the idea that the vertices have capacities l(v). This
is because any flow that goes through v in the original graph must go through
the edge (0 × v, 1 × v) in the new graph, in order to get from the edges going
into v to the edges going out of v.

Exercise 26.2-1

To see that equation (26.6) equals (26.7), we will show that the terms that
we are throwing into the sums are all zero. That is, we will show that if
v ∈ V \ (V1 ∪ V2), then f ′(s, v) = f ′(v, s) = 0. Since v 6∈ V1, then there is
no edge from s to v, similarly, since v 6∈ V2, there is no edge from v to s. This
means that there is no edge connecting s and v in any way. Since flow can only
pass along edges, we know that there can be no flow passing directly between s
and v.

Exercise 26.2-2

The flow across the cut is 11 + 1 + 7 + 4− 4 = 19. The capacity of the cut
is 16 + 4 + 7 + 4 = 31.

Exercise 26.2-3
If we perform a breadth first search where we consider the neighbors of a vertex
as they appear in the ordering {s, v1, v2, v3, v4, t}, the first path that we will
find is s, v1, v3, t. The min capacity of this augmenting path is 12, so we send 12
units along it. We perform a BFS on the resulting residual network. This gets
us the path s, v2, v4, t. The min capacity along this path is 4, so we send 4 units
along it. Then, the only path remaining in the residual network is {s, v2, v4, v3}
which has a min capacity of 7, since that’s all that’s left, we find it in our BFS.
Putting it all together, the total flow that we have found has a value of 23.
Exercise 26.2-4

A minimum cut corresponding to the maximum flow is S = {s, v1, v2, v4}
and T = {v3, t}. The augmenting path in part (c) cancels flow on edge (v3, v2).

Exercise 26.2-5

Since the only edges that have infinite value are those going from the super-
source or to the supersink, as long as we pick a cut that has the supersource and
all the original sources on one side, and the other side has the supersink as well
as all the original sinks, then it will only cut through edges of finite capacity.
Then, by Corollary 26.5, we have that the value of the flow is bounded above
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by the value of any of these types of cuts, which is finite.

Exercise 26.2-6

Begin by making the modification from multi-source to single-source as done
in section 26.1. Next, create an extra vertex ŝi for each i and place it between s
and si. Explicitly, remove the edge from s to si and add edges (s, ŝi) and (ŝi, si).
Similarly, create an extra vertex t̂i for each vertex ti and place it between t and
ti. Remove the edges (ti, t) and add edges (ti, t̂i) and (t̂i, t). Assign c(ŝi, si) = pi
and c(ti, t̂i) = qi. If a flow which satisfies the constraints exists, it will assign
f(ŝi, si) = pi. By flow conservation, this implies that

∑
v∈V f(si, v) = pi. Sim-

ilarly, we must have f(ti, t̂i) = qi, so by flow conservation this implies that∑
v∈V f(v, ti) = qi.

Exercise 26.2-7

To check that fp is a flow, we make sure that it satisfies both the capacity
constraints and the flow constraints. First, the capacity constraints. To see
this, we recall our definition of cf (p), that is, it is the smallest residual capacity
of any of the edges along the path p. Since we have that the residual capacity
is always less than or equal to the initial capacity, we have that each value of
the flow is less than the capacity. Second, we check the flow constraints, Since
the only edges that are given any flow are along a path, we have that at each
vertex interior to the path, the flow in from one edge is immediately canceled
by the flow out to the next vertex in the path. Lastly, we can check that its
value is equal to cf (p) because, while s may show up at spots later on in the
path, it will be canceled out as it leaves to go to the next vertex. So, the only
net flow from s is the initial edge along the path, since it (along with all the
other edges) is given flow cf (p), that is the value of the flow fp.

Exercise 26.2-8

Paths chosen by the while loop of line 3 go from s to t and are simple because
capacities are always nonnegative. Thus, no edge into s will ever appear on an
augmenting path, so such edges may as well never have existed.

Exercise 26.2-9

The augmented flow does satisfy the flow conservation property, since the
sum of flow into a vertex and out of a vertex can be split into two sums each,
one running over flow in f and the other running over flow in f ′, since we have
the parts are equal separately, their sums are also equal.

The capacity constraint is not satisfied by this arbitrary augmentation of
flows. To see this, suppose we only have the vertices s and t, and have a single
edge from s to t of capacity 1. Then we could have a flow of value 1 from s to
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t, however, augmenting this flow with itself ends up putting two units along the
edge from s to t, which is greater than the capacity we can send.

Exercise 26.2-10

Suppose we already have a maximum flow f . Consider a new graph G where
we set the capacity of edge (u, v) to f(u, v). Run Ford-Fulkerson, with the mod-
ification that we remove an edge if its flow reaches its capacity. In other words,
if f(u, v) = c(u, v) then there should be no reverse edge appearing in residual
network. This will still produce correct output in our case because we never
exceed the actual maximum flow through an edge, so it is never advantageous
to cancel flow. The augmenting paths chosen in this modified version of Ford-
Fulkerson are precisely the ones we want. There are at most |E| because every
augmenting path produces at least one edge whose flow is equal to its capacity,
which we set to be the actual flow for the edge in a maximum flow, and our
modification prevents us from ever destroying this progress.

Exercise 26.2-11

To test edge connectivity, we will take our graph as is, pick an arbitrary s
to be our source for the flow network, and then, we will consider every possible
other selection of our sink t. For each of these flow networks, we will replace
each (undirected) edge in the original graph with a pair of anti-symmetric edges,
each of capacity 1.

We claim that the minimum value of all of these different considered flow
networks’ maximum flows is indeed the edge connectivity of the original graph.
Consider one particular flow network, that is, a particular choice for t. Then,
the value of the maximum flow is the same as the value of the minimum cut
separating s and t. Since each of the edges have a unit capacity, the value of
any cut is the same as the number of edges in the original graph that are cut
by that particular cut. So, for this particular choice of t, we have that the
maximum flow was the number of edges needed to be removed so that s and
t are in different components. Since our end goal is to remove edges so that
the graph becomes disconnected, this is why we need to consider all n− 1 flow
networks. That is, it may be much harder for some choices of t than others to
make s and t end up in different components. However, we know that there is
some vertex that has to be in a different component than s after removing the
smallest number of edges required to disconnect the graph. So, this value for
the number of edges is considered when we have t be that vertex.

Exercise 26.2-12

Since every vertex lies on some path starting from s there must exist a cycle
which contains the edge (v, s). Use a depth first search to find such a cycle with
no edges of zero flow. Such a cycle must exist since f satisfies conservation of
flow. Since the graph is connected this takes O(E). Then decrement the flow
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of every edge on the cycle by 1. This preserves the value of the flow so it is
still maximal. It won’t violate the capacity constraint because f > 0 on every
edge of the cycle prior to decrementing. Finally, flow conservation isn’t violated
because we decrement both an incoming and outgoing edge for each vertex on
the cycle by the same amount.

Exercise 26.2-13

Suppose that your given flow network contains |E| edges, then, we were to
modify all of the capacities of the edges by taking any edge that has a postive
capacity and increasing its capacity by 1

|E|+1 . Doing this modification can’t get

us a set of edges for a min cut that isn’t also a min cut for the unmodified graph
because the difference between the value of the min cut and the next lowest cut
vale was at least one because all edge weights were integers. This means that

the new min cut value is going to be at most the original plus |E|
|E|+1 . Since this

value is more than the second smallest valued cut in the original flow network,
we know that the choice of cuts we make in the new flow network is also a
minimum cut in the original. Lastly, since we added a small constant amount
to the value of each edge, our minimum cut would have the smallest possible
number of edges, otherwise one with fewer would have a smaller value.

Exercise 26.3-1
First, we pick an augmenting path that passes through vertices 1 and 6. Then,
we pick the path going through 2 and 8. Then, we pick the path going through
3 and 7. Then, the resulting residual graph has no path from s to t. So, we
know that we are done, and that we are pairing up vertices (1, 6), (2, 8), and
(3, 7). This number of unit augmenting paths agrees with the value of the cut
where you cut the edges (s, 3), (6, t), and (7, t).

Exercise 26.3-2

We proceed by induction on the number of iterations of the while loop of
Ford-Fulkerson. After the first iteration, since c only takes on integer values
and (u, v).f is set to 0, cf only takes on integer values. Thus, lines 7 and 8 of
Ford-Fulkerson only assign integer values to (u, v).f . Assume that (u, v).f ∈ Z
for all (u, v) after the nth iteration. On the (n+ 1)st iteration cf (p) is set to the
minimum of cf (u, v) which is an integer by the induction hypothesis. Lines 7
and 8 compute (u, v).f or (v, u).f . Either way, these the the sum or difference
of integers by assumption, so after the (n+ 1)st iteration we have that (u, v).f
is an integer for all (u, v) ∈ E. Since the value of the flow is a sum of flows of
edges, we must have |f | ∈ Z as well.

Exercise 26.3-3

The length of an augmenting path can be at most 2 min{|L|, |R|} + 1. To
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see that this is the case, we can construct an example which has an augmenting
path of that length.

Suppose that the vertices of L are {`1, `2, . . . `|L|}, and ofR are {r1, r2, . . . , r|R|}.
For convenience, we will call m = min{|L|, |R|}. Then, we will place the edges

{(`m, rm − 1), (`1, r1), (`1, rm)} ∪
(
∪i=m−1
i=2 {(`i, ri), (`i, ri−1)}

)
Then, after augmenting with the shortest length path min{|L|, |R|}−1 times,

we could end up having sent a unit flow along {(`i, ri)}i=1,...,m−1. At this point,
there is only a single augmenting path, namely, {s, `m, rm−1, `m−1, rm−2, . . . , `2, r1, `1, rm, t}.
This path has the length 2m+ 1.

It is clear that any simple path must have length at most 2m+ 1, since the
path must start at s, then alternate back and forth between L and R, and then
end at t. Since augmenting paths must be simple, it is clear that our bound
given for the longest augmenting path is tight.

Exercise 26.3-4

First suppose there exists a perfect matching in G. Then for any subset
A ⊆ L, each vertex of A is matched with a neighbor in R, and since it is a
matching, no two such vertices are matched with the same vertex in R. Thus,
there are at least |A| vertices in the neighborhood of A. Now suppose that
|A| ≤ |N(A)| for all A ⊆ L. Run Ford-Fulkerson on the corresponding flow
network. The flow is increased by 1 each time an augmenting path is found, so
it will suffice to show that this happens |L| times. Suppose the while loop has
run fewer than L times, but there is no augmenting path. Then fewer than L
edges from L to R have flow 1. Let v1 ∈ L be such that no edge from v1 to
a vertex in R has nonzero flow. By assumption, v1 has at least one neighbor
v′1 ∈ R. If any of v1’s neighbors are connected to t in Gf then there is a path,
so assume this is not the case. Thus, there must be some edge (v2, v1) with
flow 1. By assumption, N({v1, v2}) ≥ 2, so there must exist v′2 6= v′1 such that
v′2 ∈ N({v1, v2}). If (v′2, t) is an edge in the residual network we’re done since
v′2 must be a neighbor of v2, so s, v1, v

′
1, v2, v

′
2, t is a path in Gf . Otherwise v′2

must have a neighbor v3 ∈ L such that (v3, v
′
2) is in Gf . Specifically, v3 6= v1

since (v3, v
′
2) has flow 1, and v3 6= v2 since (v2, v

′
1) has flow 1, so no more flow

can leave v2 without violating conservation of flow. Again by our hypothesis,
N({v1, v2, v3}) ≥ 3, so there is another neighbor v′3 ∈ R.

Continuing in this fashion, we keep building up the neighborhood v′i, expand-
ing each time we find that (v′i, t) is not an edge in Gf . This cannot happen L
times, since we have run the Ford-Fulkerson while-loop fewer than |L| times, so
there still exist edges into t in Gf . Thus, the process must stop at some vertex
v′k, and we obtain an augmenting path s, v1, v

′
1, v2, v

′
2, v3, . . . , vk, v

′
k, t, contra-

dicting our assumption that there was no such path. Therefore the while loop
runs at least |L| times. By Corollary 26.3 the flow strictly increases each time
by fp. By Theorem 26.10 fp is an integer. In particular, it is equal to 1. This
implies that |f | ≥ |L|. It is clear that |f | ≤ |L|, so we must have |f | = |L|. By
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Corollary 26.11 this is the cardinality of a maximum matching. Since |L| = |R|,
any maximum matching must be a perfect matching.

Exercise 26.3-5

We convert the bipartite graph into a flow problem by making a new vertex
for the source which has an edge of unit capacity going to each of the vertices
in L, and a new vertex for the sink that has an edge from each of the vertices in
R, each with unit capacity. We want to show that the number of edge between
the two parts of the cut is at least L, this would get us by the max-flow-min-
cut theorem that there is a flow of value at least |L|. The, we can apply the
integrality theorem that all of the flow values are integers, meaning that we are
selecting |L| disjoint edges between L and R.

To see that every cut must have capacity at lest |L|, let S1 be the side of the
cut containing the source and let S2 be the side of the cut containing the sink.
Then, look at L ∩ S1. The source has an edge going to each of L ∩ (S1)c, and
there is an edge from R ∩ S1 to the sink that will be cut. This means that we
need that there are at least |L∩S1|− |R∩S1| many edges going from L∩S1| to
R ∩ S2. If we look at the set of all neighbors of L ∩ S1, we get that there must
be at least the same number of neighbors in R, because otherwise we could sum
up the degrees going from L ∩ S1 to R on both sides, and get that some of the
vertices in R would need to have a degree higher than d. This means that the
number of neighbors of L ∩ S1 is at least L ∩ S1, but we have that they are in
S1, but there are only |R ∩ S1| of those, so, we have that the size of the set of
neighbors of L∩S1 that are in S2 is at least |L∩S1|−|R∩S1|. Since each of these
neighbors has an edge crossing the cut, we have that the total number of edges
that the cut breaks is at least (|L|−|L∩S1|)+(|L∩S1|−|R∩S1|)+|R∩S1| = |L|.
Since each of these edges is unit valued, the value of the cut is at least |L|.

Exercise 26.4-1

When we run INITIALIZE-PREFLOW(G,s), s.e is zero prior to the for loop
on line 7. Then, for each of the vertices that s has an edge to, we decrease the
value of s.e by the capacity of that edge. This means that at the end, s.e is
equal to the negative of the sum of all the capacities coming out of s. This is
then equal to the negative of the cut value of the cut that puts s on one side,
and all the other vertices on the other. The negative of the value of the min cut
is larger or equal to the negative of the value of this cut. Since the value of the
max flow is the value of the min cut, we have that the negative of the value of
the max flow is larger or equal to s.e.

Exercise 26.4-2

We must select an appropriate data structure to store all the information
which will allow us to select a valid operation in constant time. To do this, we
will need to maintain a list of overflowing vertices. By Lemma 26.14, a push or
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a relabel operation always applies to an overflowing vertex. To determine which
operation to perform, we need to determine whether u.h = v.h + 1 for some
v ∈ N(u). We’ll do this by maintaining a list u.high of all neighbors of u in Gf

which have height greater than or equal to u. We’ll update these attributes in
the PUSH and RELABEL functions. It is clear from the pseudocode given for
PUSH that we can execute it in constant time, provided we have maintain the
attributes δf (u, v), u.e, cf (u, v), (u, v).f , and u.h. Each time we call PUSH(u, v)
the result is that u is no longer overflowing, so we must remove it from the list.
Maintain a pointer u.overflow to u’s position in the overflow list. If a vertex u
is not overflowing, set u.overflow = NIL. Next, check if v became overflowing.
If so, set v.overflow equal to the head of the overflow list. Since we can update
the pointer in constant time and delete from a linked list given a pointer to the
element to be deleted in constant time, we can maintain the list in O(1). The
RELABEL operation takes O(V ) because we need to compute the minimum v.h
from among all (u, v) ∈ Ef , and there could be |V | − 1 many such v. We will
also need to update u.high during RELABEL. When RELABEL(u) is called,
set u.high equal to the empty list and for each vertex v which is adjacent to u,
if v.h = u.h + 1, add u to the list v.high. Since this takes constant time per
adjacent vertex we can maintain the attribute in O(V ) per call to relabel.

Exercise 26.4-3

To run RELABEL(u), we need to take the min a number of things equal to
the out degree of u (and so taking this min will take time proportional to the out
degree). This means that since each vertex will only be relabeled at most O(|V |)
many times, the total amount of work is on the order of |V |

∑
v∈V outdeg(v).

But the sum of all the out degrees is equal to the number of edges, so, we have
the previous expression is on the order of |V ||E|.

Exercise 26.4-4

In the proof of 2 =⇒ 3 in Theorem 26.6 we obtain a minimum cut by letting
S = {v ∈ V | there exists a path from s to v in Gf} and T = V − S. Given a
flow, we can form the residual graph in O(E). Then we just need to perform
a depth first search to find the vertices reachable from s. This can be done in
O(V + E), and since |E| ≥ |V | − 1 the whole procedure can be carried out in
O(E).

Exercise 26.4-5

First, construct the flow network for the bipartite graph as in the previous
section. Then, we relabel everything in L. Then, we push from every vertex in
L to a vertex in R, so long as it is possible. keeping track of those that vertices
of L that are still overflowing can be done by a simple bit vector. Then, we
relabel everything in R and push to the last vertex. Once these operations have
been done, The only possible valid operations are to relabel the vertices of L
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that weren’t able to find an edge that they could push their flow along, so could
possibly have to get a push back from R to L. This continues until there are no
more operations to do. This takes time of O(V (E + V )).

Exercise 26.4-6

The number of relabel operations and saturating pushes is the same as before.
An edge can handle at most k nonsaturating pushes before it becomes saturated,
so the number of nonsaturating pushes is at most 2k|V ||E|. Thus, the total num-
ber of basic operations is at most 2|V |2 + 2|V ||E|+ 2k|V ||E| = O(kV E).

Exercise 26.4-7

This won’t affect the asymptotic performance, in fact it will improve the
bound obtained in lemma 16.20 to be that no vertex will ever have a height
more than 2|V | − 3. Since this lemma was the source of all the bounds later,
they carry through, and are actually a little bit (not asymptotically) better
(lower).

To see that it won’t affect correctness of the algorithm. We notice that the
reason that we needed the height to be as high as it was was so that we could
consider all the simple paths from s to t. However, when we are done initializ-
ing, we have that the only overflowing vertices are the ones for which there is
an edge to them from s. Then, we only need to consider all the simple paths
from them to t, the longest such one involves |V | − 1 vertices, and, so, only
|V | − 2 different edges, and so it only requires that there are |V | − 2 differences
in heights, since the set {0, 1, . . . , |V | − 3} has |V | − 2 different values, this is
possible.

Exercise 26.4-8

We’ll prove the claim by induction on the number of push and relabel op-
erations. Initially, we have u.h = |V | if u = s and 0 otherwise. We have
s.h − |V | = 0 ≤ δf (s, s) = 0 and u.h = 0 ≤ δf (u, t) for all u 6= s, so the claim
holds prior to the first iteration of the while loop on line 2 of the GENERIC-
PUSH-RELABEL algorithm. Suppose that the properties have been maintained
thus far. If the next iteration is a nonsaturating push then the properties are
maintained because the heights and existence of edges in the residual network are
preserved. If it is a saturating push then edge (u, v) is removed from the residual
network, which increases both δf (u, t) and δf (u, s), so the properties are main-
tained regardless of the height of u. Now suppose that the next iteration causes
a relabel of vertex u. For all v such that (u, v) ∈ Ef we must have u.h ≤ v.h.
Let v′ = min{v.h|(u, v) ∈ Ef}. There are two cases to consider. First, sup-
pose that v′.h < |V |. Then after the relabeling we have u.h = 1 + v′.h ≤
1 + min(u,v)∈Ef

δf (v, t) = δf (u, t). Second, suppose that v′.h ≥ |V |. Then after
relabeling we have u.h = 1+v′.h ≤ 1+ |V |+min(u,v)∈Ef

δf (v, s) = δf (u, s)+ |V |
which implies that u.h − |V | ≤ δ)f(u, s). Therefore the GENERIC-PUSH-
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RELABEL procedure maintains the desired properties.

Exercise 26.4-9

What we should do is to, for successive backwards neighborhoods of t, rela-
bel everything in that neighborhood. This will only take at most O(V E) time
(see 26.4-3). This also has the upshot of making it so that once we are done
with it, every vertex’s height is equal to the quantity δf (u, t). Then, since we
begin with equality, after doing this, the inductive step we had in the solution
to the previous exercise shows that this equality is preserved.

Exercise 26.4-10

Each vertex has maximum height 2|V |−1. Since heights don’t decrease, and
there are |V | − 2 vertices which can be overflowing, the maximum contribution
of relabels to Φ over all vertices is (2|V | − 1)(|V | − 2). A saturating push from
u to v increases Φ by at most v.h ≤ 2|V | − 1, and there are at most 2|V ||E|
saturating pushes, so the total contribution over all saturating pushes to Φ is
at most (2|V | − 1)(2|V ||E|). Since each nonsaturating push decrements Φ by
at least on and Φ must equal zero upon termination, we must have that the
number of nonsaturating pushes is at most

(2|V |−1)(|V |−2)+ (2|V |−1)(2|V ||E|) = 4|V |2|E|+2|V |2−5|V |+3−2|V ||E|.

Using the fact that |E| ≥ |V | − 1 and |V | ≥ 4 we can bound the number of
saturating pushes by 4|V |2|E|.

Exercise 26.5-1

When we initialize the preflow, we have 26 units of flow leaving s. Then,
we consider v1 since it is the first element in the L list. When we discharge it,
we increase it’s height to 1 so that it can dump 12 of it’s excess along its edge
to vertex v3, to discharge the rest of it, it has to increase it’s height to |V |+ 1
to discharge it back to s. It was already at the front, so, we consider v2. We
increase its height to 1. Then, we send all of its excess along its edge to v4. We
move it to the front, which means we next consider v1, and do nothing because
it is not overflowing. Up next is vertex v3. After increasing its height to 1, it
can send all of its excess to t. This puts v3 at the front, and we consider the
non-overflowing vertices v2 and v1. Then, we consider v4, it increases its height
to 1, then sends 4 units to t. Since it still has an excess of 10 units, it increases
its height once again. Then it becomes valid for it to send flow back to v2 or to
v3. It considers v4 first because of the ordering of its neighbor list. This means
that 10 units of flow are pushed back to v2. Since v4.h increased, it moves to
the front of the list Then, we consider v2 since it is the only still overflowing
vertex. We increase its height to 3. Then, it is overflowing by 10 so it increases
its height to 3 to send 6 units to v4. It’s height increased so it goes to the front
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of the list. Then, we consider v4, which is overflowing. it increases its height to
3, then it sends 6 units to v3. Again, it goes to the front of the list. Up next is
v2 which is not overflowing, v3 which is, so it increases it’s height by 1 to send
4 units of flow to t. Then sends 2 units to v4 after increasing in height. The
excess flow keeps bobbing around the four vertices, each time requiring them to
increase their height a bit to discharge to a neighbor only to have that neighbor
increase to discharge it back until v2 has increased in height enough to send all
of it’s excess back to s, this completes and gives us a maximum flow of 23.

Exercise 26.5-2

Initially, the vertices adjacent to s are the only ones which are overflowing.
The implementation is as follows:

Algorithm 1 PUSH-RELABEL-QUEUE(G,s)

1: INITIALIZE-PREFLOW(G, s)
2: Initialize an empty queue q
3: for v ∈ G.Adj[s] do
4: q.push(v)
5: end for
6: while q.head 6= NIL do
7: DISCHARGE(q.head)
8: q.pop()
9: end while

Note that we need to modify the DISCHARGE algorithm to push vertices
v onto the queue if v was not overflowing before a discharge but is overflowing
after one. Between lines 7 and 8 of DISCHARGE(u), add the line “if v.e > 0,
q.push(v).” This is an implementation of the generic push-relabel algorithm,
so we know it is correct. The analysis of runtime is almost identical to that
of Theorem 26.30. We just need to verify that there are at most |V | calls to
DISCHARGE between two consecutive relabel operations. Observe that after
calling PUSH(u, v), Corollary 26.28 tells us that no admissible edges are enter-
ing v. Thus, once v is put into the queue because of the push, it can’t be added
again until it has been relabeled. Thus, at most |V | vertices are added to the
queue between relabel operations.

Exercise 26.5-3

If we change relabel to just increment the value of u, we will not be ruining
the correctness of the Algorithm. This is because since it only applies when
u.h ≤ v.h, we won’t be every creating a graph where h ceases to be a height
function, since u.h will only ever be increasing by exactly one whenever relabel
is called, ensuring that u.h + 1 ≤ v.h. This means that Lemmatae 26.15 and
26.16 will still hold. Even Corollary 26.21 holds since all it counts on is that
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relabel causes some vertex’s h value to increase by at least one, it will still work
when we have all of the operations causing it to increase by exactly one. How-
ever, Lemma 26.28 will no longer hold. That is, it may require more than a
single relabel operation to cause an admissible edge to appear, if for example,
u.h was strictly less than the h values of all its neighbors. However, this lemma
is not used in the proof of Exercise 26.4-3, which bounds the number of relabel
operations. Since the number of relabel operations still have the same bound,
and we know that we can simulate the old relabel operation by doing (possibly
many) of these new relabel operations, we have the same bound as in the origi-
nal algorithm with this different relabel operation.

Exercise 26.5-4

We’ll keep track of the heights of the overflowing vertices using an array and
a series of doubly linked lists. In particular, let A be an array of size |V |, and let
A[i] store a list of the elements of height i. Now we create another list L, which
is a list of lists. The head points to the list containing the vertices of highest
height. The next pointer of this list points to the next nonempty list stored in
A, and so on. This allows for constant time insertion of a vertex into A, and also
constant time access to an element of largest height, and because all lists are
doubly linked, we can add and delete elements in constant time. Essentially, we
are implementing the algorithm of Exercise 26.5-2, but with the queue replaced
by a priority queue with constant time operations. As before, it will suffice to
show that there are at most |V | calls to discharge between consecutive relabel
operations.

Consider what happens when a vertex v is put into the priority queue. There
must exist a vertex u for which we have called PUSH(u, v). After this, no ad-
missible edge is entering v, so it can’t be added to the priority queue again
until after a relabel operation has occurred on v. Moreover, every call to DIS-
CHARGE terminates with a PUSH, so for every call to DISCHARGE there is
another vertex which can’t be added until a relabel operation occurs. After |V |
DISCHARGE operations and no relabel operations, there are no remaining valid
PUSH operations, so either the algorithm terminates, or there is a valid relabel
operation which is performed. Thus, there are O(V 3) calls to DISCHARGE.
By carrying out the rest of the analysis of Theorem 26.30, we conclude that the
runtime is O(V 3).

Exercise 26.5-5

Suppose to try and obtain a contradiction that there were some minimum
cut for which a vertex that had v.h > k were on the sink side of that cut.
For that minimum cut, there is a residual flow network for which that cut is
saturated. Then, if there were any vertices that were also on the sink side of the
cut which had an edge going to v in this residual flow network, since it’s h value
cannot be equal to k, we know that it must be greater than k since it could be
only at most one less than v. We can continue in this way to let S be the set
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of vertices on the sink side of the graph which have an h value greater than k.
Suppose that there were some simple path from a vertex in S to s. Then, at
each of these steps, the height could only decrease by at most 1, since it cannot
get from above k to 0 withour going through k, we know that there is no path
in the residual flow network going from a vertex in S to s. Since a minimal cut
corresponds to disconnected parts of the residual graph for a maximum flow,
and we know there is no path from S to s, there is a minimum cut for which S
lies entirely on the source side of the cut. This was a contradiction to how we
selected v,and so have shown the first claim.

Now we show that after updating the h values as suggested, we are still left
with a height function. Suppose we had an edge (u, v) in the residual graph. We
knew from before that u, h ≤ v.h + 1. However, this means that if u.h > k, so
must be v.h. So, if both were above k, we would be making them equal, causing
the inequality to still hold. Also, if just v.k were above k, then we have not
decreased it’s h value, meaning that the inequality also still must hold. Since we
have not changed the value of s.h, and t.h, we have all the required properties
to have a height function after modifying the h values as described.

Problem 26-1

a. This problem is identical to exercise 26.1-7.

b. Construct a vertex constrained flow network from the instance of the escape
problem by letting our flow network have a vertex (each with unit capacity)
for each intersection of grid lines, and have a bidirectional edge with unit
capacity for each pair of vertices that are adjacent in the grid. Then, we will
put a unit capacity edge going from s to each of the distinguished vertices,
and a unit capacity edge going from each vertex on the sides of the grid to t.
Then, we know that a solution to this problem will correspond to a solution
to the escape problem because all of the augmenting paths will be a unit flow,
because every edge has unit capacity. This means that the flows through the
grid will be the paths taken. This gets us the escaping paths if the total flow
is equal to m (we know it cannot be greater than m by looking at the cut
which has s by itself). And, if the max flow is less than m, we know that the
escape problem is not solvable, because otherwise we could construct a flow
with value m from the list of disjoint paths that the people escaped along.

Problem 26-2

a. Set up the graph G′ as defined in the problem, give each edge capacity 1,
and run a maximum-flow algorithm. I claim that if (xi, yj) has flow 1 in the
maximum flow and we set (i, j) to be an edge in our path cover, then the
result is a minimum path cover. First observe that no vertex appears twice
in the same path. If it did, then we would have f(xi, yj) = f(xk, yj) for
some i 6= k 6= j. However, this contradicts the conservation of flow, since the
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capacity leaving yj is only 1. Moreover, since the capacity from s to xi is 1,
we can never have two edges of the form (xi, yj) and (xi, yk) for k 6= j. We
can ensure every vertex is included in some path by asserting that if there
is no edge (xi, yj) or (xj , yi for some j, then j will be on a path by itself.
Thus, we are guaranteed to obtain a path cover. If there are k paths in a
cover of n vertices, then they will consist of n − k edges in total. Given a
path cover, we can recover a flow by assigning edge (xi, yj) flow 1 if and
only if (i, j) is an edge in one of the paths in the cover. Suppose that the
maximum flow algorithm yields a cover with k paths, and hence flow n− k,
but a minimum path cover uses strictly fewer than k paths. Then it must use
strictly more than n− k edges, so we can recover a flow which is larger than
the one previously found, contradicting the fact that the previous flow was
maximal. Thus, we find a minimum path cover. Since the maximum flow
in the graph corresponds to finding a maximum matching in the bipartite
graph obtained by considering the induced subgraph of G′ on {1, 2, . . . , n},
section 26.3 tells us that we can find a maximum flow in O(V E).

b. This doesn’t work for directed graphs which contain cycles. To see this,
consider the graph on {1, 2, 3, 4} which contains edges (1, 2), (2, 3), (3, 1), and
(4, 3). The desired output would be a single path 4,3,1,2 but flow which
assigns edges (x1, y2), (x2, y3), and (x3, y1) flow 1 is maximal.

Problem 26-3

a. Suppose to a contradiction that there were some Ji ∈ T , and some Ak ∈ Ri

so that Ak 6∈ T . However, by the definition of the flow network, there is an
edge of infinite capacity going from Ak to Ji because Ak ∈ Ri. This means
that there is an edge of infinite capacity that is going across the given cut.
This means that the capacity of the cut is infinite, a contradiction to the
given fact that the cut was finite capacity.

b. Though tempting, it doesn’t suffice to just look at the experts that are on
the s side of the cut. To see why this doesn’t work, imagine there’s one
specialized skill areal, such as “Computer power switch operator’, that is
required for every job. Then, any finite cut that would include any job
getting done would requiring that this expert be hired. However, since there
is an infinite capacity edge coming from him to every other job, then all of
the experts need for all the other jobs would also need to be hired. So, if
we have this obiquitously required employee, any minimum cut would have
to be all or nothing, but it is trivial to find a counterexample to this being
optimal.

In order for this problem to be solvable, one must assume that for every
expert you’ve hired, you do all of the jobs that he is required for. If this is
the case, then let Sk ⊆ [n] be the indices of the experts that lie on the source
side of the cut, and let Si ⊆ [m] be the indices of jobs that lie on the source
side of the cut, then the net revenue is just
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To see this is minimum, transferring over some set of experts and tasks from
the sink side to the source side causes the capacity to go down by the cost of
those experts and go up by the revenue of those jobs. If the cut was minimal
than this must be a positive change, so the revenue isn’t enough to justify
the hire, meaning that those jobs that were on the source side in the minimal
cut are exactly the jobs to attempt.

c. Again, to get a solution, we must make the assumption that for every expert
that is hired, all jobs that that expert is required for must be completed.
Basically just run either the O(V 3) relabel-to-front algorithm described in
section 26.5 on the flow network, and hire the experts that are on the source
side of the cut. By the previous part, we know that this gets us the best
outcome. The number of edges in the flow network is m+n+r, and the
number of vertices is 2+m+n, so the runtime is just O((2 +m+ n)3), so it’s
cubic in max(m,n). There is no dependence on R using this algorithm, but
this is reasonable since we have the inherent bound that r < mn, which is a
lower order term.

Without this unstated assumption, I suspect that there isn’t an efficient
solution possible, but cannot think of what NP-complete problem you would
use for the reduction.

(Of course if he just needed experts in topics contained in this book, he could
of just hired either Michelle or me)

Problem 26-4

a. If there exists a minimum cut on which (u, v) doesn’t lie then the maximum
flow can’t be increased, so there will exist no augmenting path in the residual
network. Otherwise it does cross a minimum cut, and we can possibly in-
crease the flow by 1. Perform one iteration of Ford-Fulkerson. If there exists
an augmenting path, it will be found and increased on this iteration. Since
the edge capacities are integers, the flow values are all integral. Since flow
strictly increases, and by an integral amount each time, a single iteration of
the while loop of line 3 of Ford-Fulkerson will increase the flow by 1, which
we know to be maximal. To find an augmenting path we use a BFS, which
runs in O(V + E′) = O(V + E).

b. If the edge’s flow was already at least 1 below capacity then nothing changes.
Otherwise, find a path from s to t which contains (u, v) using BFS in O(V +
E). Decrease the flow of every edge on that path by 1. This decreases total
flow by 1. Then run one iteration of the while loop of Ford-Fulkerson in
O(V + E). By the argument given in part a, everything is integer valued
and flow strictly increases, so we will either find no augmenting path, or will
increase the flow by 1 and then terminate.
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Problem 26-5

a. Since the capacity of a cut is the sum of the capacity of the edges going
from a vertex on one side to a vertex on the other, it is less than or equal to
the sum of the capacities of all of the edges. Since each of the edges has a
capacity that is ≤ C, if we were to replace the capacity of each edge with C,
we would only be potentially increasing the sum of the capacities of all the
edges. After so changing the capacities of the edges, the sum of the capacities
of all the edges is equal to C|E|, potentially an overestimate of the original
capacity of any cut, and so of the minimum cut.

b. Since the capacity of a path is equal to the minimum of the capacities of each
of the edges along that path, we know that any edges in the residual network
that have a capacity less than K cannot be used in such an augmenting
path. Similarly, so long as all the edges have a capacity of at least K, then
the capacity of the augmenting path, if it is found, will be of capacity at
least K. This means that all that needs be done is remove from the residual
network those edges whose capacity is less than K and then run BFS.

c. Since K starts out as a power of 2, and through each iteration of the while
loop on line 4, it decreases by a factor of two until it is less than 1. There
will be some iteration of that loop when K = 1. During this iteration, we
will be using any augmenting paths of capacity at least 1 when running the
loop on line 5. Since the original capacities are all integers, the augmenting
paths at each step will be integers, which means that no augmenting path
will have a capacity of less than 1. So, once the algorithm terminates, there
will be no more augmenting paths since there will be no more augmenting
paths of capacity at least 1.

d. Each time line 4 is executed we know that there is no augmenting path of
capacity at least 2K. To see this fact on the initial time that line 4 is executed
we just note that 2K = 2 ·2blg(C)c > 2 ·2lg(C)−1 = 2lg(C) = C. Then, since an
augmenting path is limited by the capacity of the smallest edge it contains,
and all the edges have a capacity at most C, no augmenting path will have
a capacity greater than that. On subsequent times executing line 4, the loop
of line 5 during the previous execution of the outer loop will of already used
up and capacious augmenting paths, and would only end once there are no
more.

Since any augmenting path must have a capacity of less than 2K, we can
look at each augmenting path p, and assign to it an edge ep which is any
edge whose capacity is tied for smallest among all the edges along the path.
Then, removing all of the edges ep would disconnect the residual network
since every possible augmenting path goes through one of those edge. We
know that there are at most |E| of them since they are a subset of the edges.
We also know that each of them has capacity at most 2K since that was the
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value of the augmenting path they were selected to be tied for cheapest in.
So, the total cost of this cut is 2K|E|.

e. Each time that the inner while loop runs, we know that it adds an amount
of flow that is at least K, since that’s the value of the augmenting path. We
also know that before we start that while loop, there is a cut of cost ≤ 2K|E|.
This means that the most flow we could possibly add is 2K|E|. Combining

these two facts, we get that the most cuts possible is 2K|E|
K = 2|E| ∈ O(|E|).

f. We only execute the outermost for loop lg(C) many times since lg(2blg(C)c) ≤
lg(C). The inner while loop only runs O(|E|) many times by the previous
part. Finally, every time the inner for loop runs, the operation it does can
be done in time O(|E|) by part b. Putting it all together, the runtime is
O(|E|2 lg(C)).

Problem 26-6

a. Suppose M is a matching and P is an augmenting path with respect to M .
Then P consists of k edges in M , and k+ 1 edges not in M . This is because
the first edge of P touches an unmatched vertex in L, so it cannot be in
M . Similarly, the last edge in P touches an unmatched vertex in R, so the
last edge cannot be in M . Since the edges alternate being in or not in M ,
there must be exactly one more edge not in M than in M . This implies that
|M ⊕ P | = |M | + |P | − 2k = |M | + 2k + 1 − 2k = |M | + 1 since we must
remove each edge of M which is in P from both M and P . Now suppose
P1, P2, . . . , Pk are vertex-disjoint augmenting paths with respect to M . Let
ki be the number of edges in Pi which are in M , so that |Pi| = 2k + i + 1.
Then we have

M⊕(P1∪P2∪. . .∪Pk) = |M |+|P1|+. . .+|Pk|−2k1−2k2−. . .−2kk = |M |+k.

To see that we in fact get a matching, suppose that there was some vertex v
which had at least 2 incident edges e and e′. They cannot both come from
M , since M is a matching. They cannot both come from P since P is simple
and every other edge of P is removed. Thus, e ∈M and e′ ∈ P\M . However,
if e ∈ M then e ∈ P , so e /∈ M ⊕ P , a contradiction. A similar argument
gives the case of M ⊕ (P1 ∪ . . . ∪ Pk).

b. Suppose some vertex in G′ has degree at least 3. Since the edges of G′

come from M ⊕M∗, at least 2 of these edges come from the same matching.
However, a matching never contains two edges with the same endpoint, so
this is impossible. Thus every vertex has degree at most 2, so G′ is a disjoint
union of simple paths and cycles. If edge (u, v) is followed by edge (z, w) in
a simple path or cycle then we must have v = z. Since two edges with the
same endpoint cannot appear in a matching, they must belong alternately to
M and M∗. Since edges alternate, every cycle has the same number of edges
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in each matching and every path has at most one more edge in one matching
than in the other. Thus, if |M | ≤ |M∗| there must be at least |M∗| − |M |
vertex-disjoint augmenting paths with respect to M .

c. Every vertex matched by M must be incident with some edge in M ′. Since
P is augmenting with respect to M ′, the left endpoint of the first edge of
P isn’t incident to a vertex touched by an edge in M ′. In particular, P
starts at a vertex in L which is unmatched by M since every vertex of M is
incident with an edge in M ′. Since P is vertex disjoint from P1, P2, . . . , Pk,
any edge of P which is in M ′ must in fact be in M and any edge of P which
is not in M ′ cannot be in M . Since P has edges alternately in M ′ and
E −M ′, P must in fact have edges alternately in M and E −M . Finally,
the last edge of P must be incident to a vertex in R which is unmatched
by M ′. Any vertex unmatched by M ′ is also unmatched by M , so P is an
augmenting path for M . P must have length at least l since l is the length
of the shortest augmenting path with respect to M . If P had length exactly
l then this would contradict the fact that P1 ∪ . . . ∪ Pk is a maximal set of
vertex disjoint paths of length l because we could add P to the set. Thus P
has more than l edges.

d. Any edge in M ⊕M ′ is in exactly one of M or M ′. Thus, the only possible
contributing edges from M ′ are from P1 ∪ . . . ∪ Pk. An edge from M can
contribute if and only if it is not in exactly one of M and P1 ∪ . . . ∪ Pk,
which means it must be in both. Thus, the edges from M are redundant so
M ⊕M ′ = (P1 ∪ . . . ∪ Pk) which implies A = (P1 ∪ . . . ∪ Pk)⊕ P .

Now we’ll show that P is edge disjoint from each Pi. Suppose that an edge
e of P is also an edge of Pi for some i. Since P is an augmenting path with
respect to M ′, either e ∈ M ′ or e ∈ E −M ′. Suppose e ∈ M ′. Since P is
also augmenting with respect to M , we must have e ∈M . However, if e is in
M and M ′ then e cannot be in any of the Pi’s by the definition of M ′. Now
suppose e ∈ E−M ′. Then e ∈ E−M since P is augmenting with respect to
M . Since e is an edge of Pi, e ∈ E−M ′ implies that e ∈M , a contradiction.

Since P has edges alternately in M ′ and E −M ′ and is edge disjoint from
P1 ∪ . . . ∪ Pk, P is also an augmenting path for M , which implies |P | ≥ l.
Since every edge in A is disjoint we conclude that |A| ≥ (k + 1)l.

e. Suppose M∗ is a matching with strictly more than |M |+ |V |/(l + 1) edges.
By part b there are strictly more than |V |/(l+ 1) vertex-disjoint augmenting
paths with respect to M . Each one of these contains at least l edges, so
it is incident on l + 1 vertices. Since the paths are vertex disjoint, there
are strictly more than |V |(l+ 1)/(l+ 1) distinct vertices incident with these
paths, a contradiction. Thus, the size of the maximum matching is at most
|M |+ |V |/(l + 1).

f. Consider what happens after iteration number
√
|V |. Let M∗ be a maximal

matching in G. Then |M∗| ≥ |M | so by part b, M ⊕M∗ contains at least
|M∗| − |M | vertex disjoint augmenting paths with respect to M . By part
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c, each of these is also a an augmenting path for M . Since each has length√
|V |, there can be at most

√
|V | such paths, so |M∗| − |M | ≤

√
|V |. Thus,

only
√
|V | additional iterations of the repeat loop can occur, so there are at

most 2
√
|V | iterations in total.

g. For each unmatched vertex in L we can perform a modified BFS to find the
length of the shortest path to an unmatched vertex in R. Modify the BFS
to ensure that we only traverse an edge if it causes the path to alternate
between an edge in M and an edge in E −M . The first time an unmatched
vertex in R is reached we know the length k of a shortest augmenting path.
We can use this to stop our search early if at any point we have traversed
more than that number of edges. To find disjoint paths, start at the vertices
of R which were found at distance k in the BFS. Run a DFS backwards
from these, which maintains the property that the next vertex we pick has
distance one fewer, and the edges alternate between being in M and E−M .
As we build up a path, mark the vertices as used so that we never traverse
them again. This takes O(E), so by part f the total runtime is O(

√
V E).
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