
Chapter 18

Michelle Bodnar, Andrew Lohr

March 2, 2017

Exercise 18.1-1

If we allow t = 0, then, since we only know that internal nodes have to have
at least t − 1 keys, it may be the case that some internal nodes represent no
keys, a bad situation indeed.

Exercise 18.1-2

The possible values of t are 2 and 3. Every non-root node has at least 1
(resp. 2) keys and at most 3 (resp. 5) keys. The value of t cannot exceed 3
since some nodes have only 2 keys.

Exercise 18.1-3

2

1 3,4,5

3

1,2 4,5

4

1,2,3 5

1



2,4

1 3 5

Exercise 18.1-4

The maximum number of nodes is achieved when every node has 2t children.

In this case, there are 1 + 2t+ (2t)2 + . . .+ (2t)h = 1−(2t)h+1

1−2t nodes. Since every

node has at most 2t− 1 keys, there are at most (2t)h+1 − 1 keys.

Exercise 18.1-5

We would get a t=2 B-tree. It would have one, two, or three keys depending
on if it has zero, one, or two red children respectively. Suppose that the left
child is red, then it’s keys becomes the first one, and that red node’s children
become the first and second children of the new node. Similarly, if it is the right
child that is red, that key becomes the last key listed with the new node, and
the red nodes children become the second to last and last children of the new
node.

Exercise 18.2-1

F

FS

FQS

Q

FK S

Q

CFK S

2



FQ

C KL S

FQ

C HKL S

FQ

C HKL ST

FQ

C HKL STV

FQT

C HKL S VW

FQT

C K

H LM

S VW

3



FQT

C K

H LM

RS VW

FQT

C K

H LMN

RS VW

FQT

C KM

H L NP

RS VW

FQT

AC KM

H L NP

RS VW

4



FQT

ABC KM

H L NP

RS VW

FQT

ABC KM

H L NP

RS VWX

FQT

ABC KM

H L NP

RS W

V XY

FQT

B

A CD

KM

H L NP

RS W

V XY

5



FQT

B

A CD

KM

H L NP

RS W

V XYZ

FQT

B

A CDE

KM

H L NP

RS W

V XYZ

Exercise 18.2-2

Lines 1, 2, and 13 of B-TREE-SPLIT-CHILD guarantee that there are no
redundant DISK-WRITE operations performed in this part of the algorithm,
since each of these lines necessarily makes a change to nodes z, y, and x respec-
tively. B-TREE-INSERT makes no calls to DISK-READ or DISK-WRITE. In
B-TREE-INSERT-NONFULL, we only reach line 8 after executing line 7, which
modifies x, so line 8 isn’t redundant. The only call to DISK-READ occurs at
line 12. Since calls to B-TREE-INSERT-NONFULL are made recursively on
successive children, line 12 will never be redundant. Thus, no redundant read
or write operations are ever performed.

Exercise 18.2-3

To find the minimum key, just always select the first child until you are on a
leaf, then return the first key. To find the predecessor of a given key, fist find it.
if it’s on a leaf then just return the preceding key. If it’s not a leaf, then return
the largest element(in an analogous way to finding minimum) of the child that
immediately precedes the key just found.

Exercise 18.2-4

The final tree can have as many as n− 1 nodes. Unless n = 1 there cannot
ever be n nodes since we only ever insert a key into a non-empty node, so there
will always be at least one node with 2 keys. Next observe that we will never
have more than one key in a node which is not a right spine of our B-tree. This

6



is because every key we insert is larger than all keys stored in the tree, so it
will be inserted into the right spine of the tree. Nodes not in the right spine
are a result of splits, and since t = 2, every split results in child nodes with one
key each. The fewest possible number of nodes occurs when every node in the
right spine has 3 keys. In this case, n = 2h + 2h+1 − 1 where h is the height of
the B-tree, and the number of nodes is 2h+1 − 1. Asymptotically these are the
same, so the number of nodes is Θ(n).

Exercise 18.2-5

You would modify the insertion procedure by, in B-TREE-Insert, check if
the node is a leaf, and if it is, only split it if there twice as many keys stored
as expected. Also, if an element needs to be inserted into a full leaf, we would
split the leaf into two separate leaves, each of which doesn’t have too many keys
stored in it.

Exercise 18.2-6

If we use binary search rather than linear search, the CPU time becomes
O(log2(t) logt(n)) = O(log2(n)) by the change of base formula.

Exercise 18.2-7

By Theorem 18.1, we have that the height of a B-tree on n elements is
bounded by logt

n+1
2 . The number of page reads needed during a search is at

worst the height. Since the cost per page access is now also a function of t,
the time required for the search is c(t) = (a + bt) logt

n+1
2 . To minimize this

expression, we’ll take a derivative with respect to t. c′(t) = b logt
n+1
2 − (a +

bt)
ln(n+1

2 )
t ln(t)2 . Then, setting this equal to zero, we have that

b logt

n + 1

2
= (a + bt)

ln
(
n+1
2

)
t ln(t)2

b ln
n + 1

2
= (a + bt)

ln
(
n+1
2

)
t ln(t)

t ln(t) = (
a

b
+ t)

t(ln(t) − 1) =
a

b

For our particular values of a = 5, and b = 10, we can solve this equation
numerically to get an approximate maxima of 3.18, so selecting t=3 will mini-
mize the worst case cost of a search in the tree.

7



Exercise 18.3-1

LPTX

AEJK NO QRS UV YZ

LQTX

AEJK NO RS UV YZ

LQT

AEJK NO RS UXYZ

Exercise 18.3-2

The algorithm B-TREE-DELETE(x, k) is a recursive procedure which deletes
key k from the B-tree rooted at node x. The functions PRED(k, x) and SUCC(k, x)
return the predecessor and successor of k in the B-tree rooted at x respectively.
The cases where k is the last key in a node have been omitted because the pseu-
docode is already unwieldy. For these, we simply use the left sibling as opposed
to the right sibling, making the appropriate modifications to the indexing in the
for-loops.

Problem 18-1

a. We will have to make a disk access for each stack operation. Since each of
these disk operations takes time Θ(m), the CPU time is Θ(mn).

b. Since only every mth push starts a new page, the number of disk operations
is approximately n/m, and the CPU runtime is Θ(n), since both the contri-
bution from the cost of the disk access and the actual running of the push
operations are both Θ(n).

c. If we make a sequence of pushes until it just spills over onto the second page,
then alternate popping and pulling many times, the asymptotic number of
disk accesses and CPU time is of the same order as in part a. This is because

8



Algorithm 1 B-TREE-DELETE(x,k)

1: if x.leaf then
2: for i = 1 to x.n do
3: if x.keyi == k then
4: Delete key k from x
5: x.n = x.n− 1
6: DISK-WRITE(x)
7: Return
8: end if
9: end for

10: end if
11: i = 1
12: while x.keyi < k do
13: i = i + 1
14: end while
15: if x.keyi == k then // If k is in node x at position i
16: DISK-READ(x.ci)
17: if x.ci.n ≥ t then
18: k′ = PRED(k, x.ci)
19: x.keyi = k′

20: DISK-WRITE(x)
21: B-TREE-DELETE(x.ci, k

′)
22: Return
23: DISK-READ(x.ci+1) x.ci+1.n ≥ t
24: k′ = SUCC(k, x.ci)
25: x.keyi = k′

26: DISK-WRITE(x)
27: B-TREE-DELETE(x.ci+1, k

′)
28: Return
29: y = x.ci
30: z = x.ci+1

31: m = y.n
32: p = z.n
33: y.keym+1 = k
34: for j = 1 to p do
35: y.keym+1+j = z.keyj
36: end for
37: y.n = m + p + 1
38: for j = i + 1 to x.n− 1 do
39: x.cj = x.cj+1

40: end for
41: x.n = x.n− 1
42: FREE(z)
43: DISK-WRITE(x)
44: DISK-WRITE(y)
45: DISK-WRITE(z)
46: B-TREE-DELETE(y, k)
47: Return
48: end if
49: end if

9



50: DISK-READ(x.ci)
51: if x.ci.n ≥ t then
52: B-TREE-DELETE(x.ci, k)
53: Return
54: DISK-READ(x.ci+1) x.ci+1.n ≥ t
55: x.ci.keyt = x.keyi
56: x.ci.n = x.ci.n + 1
57: x.keyi = x.ci+1.key1
58: x.ci.ct+1 = x.ci+1.c1
59: x.ci.n = t
60: x.ci+1.n = x.ci+1.n− 1
61: for j = 1 to x.ci+1.n do
62: x.ci+1.keyj = x.ci+1.keyj+1

63: end for
64: DISK-WRITE(x)
65: DISK-WRITE(x.ci)
66: DISK-WRITE(x.ci+1)
67: B-TREE-DELETE(x.ci, k)
68: y = x.ci
69: z = x.ci+1

70: m = y.n
71: p = z.n
72: y.keym+1 = x.keyi
73: for j = 1 to p do
74: y.keym+1+j = z.keyj
75: end for
76: y.n = m + p + 1
77: for j = i + 1 to x.n− 1 do
78: x.cj = x.cj+1

79: end for
80: x.n = x.n− 1
81: FREE(z)
82: DISK-WRITE(x)
83: DISK-WRITE(y)
84: DISK-WRITE(z)
85: B-TREE-DELETE(y, k)
86: if x.n == 0 then //This occurs when the root contains no keys
87: Free(x)
88: end if
89: Return
90: end if

10



when we are doing that alternating of pops and pushes, each one triggers a
disk access.

d. We define the potential of the stack to be the absolute value of the difference
between the current size of the stack and the most recently passed multiple
of m. This potential function means that the initial stack which has size
0, is also a multiple of m, so the potential is zero. Also, as we do a stack
operation we either increase or decrease the potential by one. For us to have
to load a new page from disk and write an old one to disk, we would need
to be at least m positions away from the most recently visited multiple of
m, because we would have had to just cross a page boundary. This cost of
loading and storing a page takes (real) cpu time of Θ(m). However, we just
had a drop in the potential function of order Θ(m). So, the amortized cost
of this operation is O(1).

Problem 18-2

a. For insertion it will suffice to explain how to update height when we split
a node. Suppose node x is split into nodes y and z, and the median of x
is merged into node w. The height of w remains unchanged unless x was
the root (in which case w.height = x.height + 1). The height of y or z
will often change. We set y.height = maxi y.ci.height + 1 and z.height =
maxi z.ci.height + 1. Each update takes O(t). Since a call to B-TREE-
INSERT makes at most h splits where h is the height of the tree, the total
time it takes to update heights is O(th), preserving the asymptotic running
time of insert. For deletion the situation is even simple. The only time the
height changes is when the root has a single node and it is merged with its
subtree nodes, leaving an empty root node to be deleted. In this case, we
update the height of the new node to be the (old) height of the root minus
1.

b. Without loss of generality, assume h′ ≥ h′′. We essentially wish to merge T ′′

into T ′ at a node of height h′′ using node x. To do this, find the node at
depth h′ − h′′ on the right spine of T ′. Add x as a key to this node, and T ′′

as the additional child. If it should happen that the node was already full,
perform a split operation.

c. Let xi be the node encountered after i steps on path p. Let li be the in-
dex of the largest key stored in xi which is less than or equal to k. We
take k′i = xi.keyli and T ′i−1 to be the tree whose root node consists of the
keys in xi which are less than xi.keyli , and all of their children. In general,
T ′i−1.height ≥ T ′i .height. For S′′, we take a similar approach. They keys
will be those in nodes passed on p which are immediately greater than k,
and the trees will be rooted at a node consisting of the larger keys, with the

11



associated subtrees. When we reach the node which contains k, we don’t
assign a key, but we do assign a tree.

d. Let T1 and T2 be empty trees. Consider the path p from the root of T to k.
Suppose we have reached node xi. We join tree T ′i−1 to T1, then insert k′i
into T1. We join T ′′i−1 to T2 and insert k′′i into T2. Once we have encountered
the node which contains k at xm.keyk, join xm.ck with T1 and xm.ck+1 with
T2. We will perform at most 2 join operations and 1 insert operation for each
level of the tree. Using the runtime determined in part (b), and the fact that
when we join a tree T ′ to T1 (or T ′′ to T2 respectively) the height difference
is T ′.height − T1.height. Since the heights are nondecreasing of successive
tree that are joined, we get a telescoping sum of heights. The first tree has
height h, where h is the height of T , and the last tree has height 0. Thus,
the runtime is O(2(h + h)) = O(lg n).

12


