
Chapter 10

Michelle Bodnar, Andrew Lohr

April 12, 2016

Exercise 10.1-1

4
4 1
4 1 3
4 1
4 1 8
4 1

Exercise 10.1-2

We will call the stacks T and R. Initially, set T.top = 0 and R.top = n + 1.
Essentially, stack T uses the first part of the array and stack R uses the last
part of the array. In stack T , the top is the rightmost element of T . In stack R,
the top is the leftmost element of R.

Algorithm 1 PUSH(S,x)

1: if S == T then
2: if T.top + 1 == R.top then
3: error “overflow”
4: else
5: T.top = T.top + 1
6: T [T.top] = x
7: end if
8: end if
9: if S == R then

10: if R.top− 1 == T.top then
11: error “overflow”
12: else
13: R.top = R.top− 1
14: T [T.top] = x
15: end if
16: end if

1

Algorithm 2 POP(S)

if S == T then
if T.top == 0 then

error “underflow”
else

T.top = T.top− 1.
return T [T.top + 1]

end if
end if
if S == R then

if R.top == n + 1 then
error “underflow”

else
R.top = R.top + 1.
return R[R.top− 1]

end if
end if

Exercise 10.1-3

4
4 1
4 1 3

1 3
1 3 8

3 8
Exercise 10.1-4

Algorithm 3 ENQUEUE

if Q.head == Q.tail + 1, or Q.head == 1 and Q.tail == Q.length then
error “overflow”

end if
Q[Q.tail] = x
if Q.tail == Q.length then

Q.tail = 1
else

Q.tail = Q.head + 1
end if

Exercise 10.1-5

As in the example code given in the section, we will neglect to check for
overflow and underflow errors.

2

Algorithm 4 DEQUEUE

if Q.tail == Q.head then
error “underflow”

end if
x = Q[Q.head]
if Q.head == Q.length then

Q.head = 1
else

Q.head = Q.head + 1
end if
return x

Algorithm 5 HEAD-ENQUEUE(Q,x)

Q[Q.head] = x
if Q.head == 1 then

Q.head = Q.length
else

Q.head = Q.head− 1
end if

Algorithm 6 TAIL-ENQUEUE(Q,x)

Q[Q.tail] = x
if Q.tail == Q.length then

Q.tail = 1
else

Q.tail = Q.tail + 1
end if

Algorithm 7 HEAD-DEQUEUE(Q,x)

x = Q[Q.head]
if Q.head == Q.length then

Q.head = 1
else

Q.head = Q.head + 1
end if

Algorithm 8 TAIL-DEQUEUE(Q,x)

x = Q[Q.tail]
if Q.tail == 1 then

Q.tail = Q.length
else

Q.tail = Q.tail − 1
end if

3

Exercise 10.1-6

The operation enqueue will be the same as pushing an element on to stack
1. This operation is O(1). To dequeue, we pop an element from stack 2. If stack
2 is empty, for each element in stack 1 we pop it off, then push it on to stack 2.
Finally, pop the top item from stack 2. This operation is O(n) in the worst case.

Exercise 10.1-7

The following is a way of implementing a stack using two queues, where pop
takes linear time, and push takes constant time. The first of these ways, consists
of just enqueueing each element as you push it. Then, to do a pop, you dequque
each element from one of the queues and place it in the other, but stopping
just before the last element. Then, return the single element left in the original
queue.

Exercise 10.2-1

To insert an element in constant time, just add it to the head by making it
point to the old head and have it be the head. To delete an element, it needs
linear time because there is no way to get a pointer to the previous element in
the list without starting at the head and scanning along.

Exercise 10.2-2

The PUSH(L,x) operation is exactly the same as LIST-INSERT(L,x). The
POP operation sets x equal to L.head, calls LIST-DELETE(L,L.head), then
returns x.

Exercise 10.2-3

In addition to the head, also keep a pointer to the last element in the linked
list. To enqueue, insert the element after the last element of the list, and set it
to be the new last element. To dequeue, delete the first element of the list and
return it.

Exercise 10.2-4

First let L.nil.key = k. Then run LIST-SEARCH’ as usual, but remove the
check that x 6= L.nil.

Exercise 10.2-5

To insert, just do list insert before the current head, in constant time. To
search, start at the head, check if the element is the current node being in-
spected, check the next element, and so on until at the end of the list or you

4

found the element. This can take linear time in the worst case. To delete, again
linear time is used because there is no way to get to the element immediately
before the current element without starting at the head and going along the list.

Exercise 10.2-6

Let L1 be a doubly linked list containing the elements of S1 and L2 be a
doubly linked list containing the elements of S2. We implement UNION as fol-
lows: Set L1.nil.prev.next = L2.nil.next and L2.nil.next.prev = L1.nil.prev
so that the last element of L1 is followed by the first element of L2. Then set
L1.nil.prev = L2.nil.prev and L2.nil.prev.next = L1.nil, so that L1.nil is the
sentinel for the doubly linked list containing all the elements of L1 and L2.

Exercise 10.2-7

Algorithm 9 REVERSE(L)

a = L.head.next
b = L.head
while a 6= NIL do

tmp = a.next
a.next = b
b = a
a = tmp

end while
L.head = b

Exercise 10.2-8

We will store the pointer value for L.head separately, for convenience. In
general, A XOR (A XOR C) = C, so once we know one pointer’s true value
we can recover all the others (namely L.head) by applying this rule. Assuming
there are at least two elements in the list, the first element will contain exactly
the address of the second.

Algorithm 10 LISTnp-SEARCH(L,k)

p = NIL
x = L.head
while x 6= NIL and x.key 6= k do

temp = x
x = pXORx.np
p = temp

end while

To reverse the list, we simply need to make the head be the “last” ele-

5

Algorithm 11 LISTnp-INSERT(L,x)

x.np = L.head
L.nil.np = xXOR(L.nil.npXORL.head)
L.head = x

Algorithm 12 LISTnp-Delete(L,x)

L.nil.np = L.nil.npXORL.headXORL.head.np
L.head.np.np = L.head.np.npXORL.head

ment before L.nil instead of the first one after this. This is done by setting
L.head = L.nil.npXORL.head.

Exercise 10.3-1

A multiple array version could be L = 2,
/ 3 4 5 6 7 /

12 4 8 19 5 11
/ 2 3 4 5 6

A single array version could be L = 4,
12 7 / 4 10 4 8 13 7 19 16 10 5 19 13 11 / 16

Exercise 10.3-2

Algorithm 13 Allocate-Object()

if free == NIL then
error “out of space”

else
x = free
free = A[x + 1]

end if

Exercise 10.3-3

Allocate object just returns the index of some cells that it’s guaranteed to
not give out again until they’ve been freed. The prev attribute is not modified
because only the next attribute is used by the memory manager, it’s up to the
code that calls allocate to use the prev and key attributes as it sees fit.

Exercise 10.3-4

For ALLOCATE-OBJECT, we will keep track of the next available spot in
the array, and it will always be one greater than the number of elements being
stored. For FREE-OBJECT(x), when a space is freed, we will decrement the

6

Algorithm 14 Free-Object(x)

A[x + 1] = free
free = x

position of each element in a position greater than that of x by 1 and update
pointers accordingly. This takes linear time.
Exercise 10.3-5

See the algorithm COMPACTIFY − LIST (L,F)
Exercise 10.4-1

18

12

7 4

5

10

2 21

Note that indices 8 and 2 in the array do not appear, and, in fact do not
represent a valid tree.

Exercise 10.4-2

See the algorithm PRINT-TREE.
Exercise 10.4-3

Exercise 10.4-4

See the algorithm PRINT-TREE.
Exercise 10.4-5

See the algorithm INORDER-PRINT’(T)
Exercise 10.4-6

Our two pointers will be left and right. For a node x, x.left will point to
the leftmost child of x and x.right will point to the sibling of x immediately to
its right, if it has one, and the parent of x otherwise. Our boolean value b, stored
at x, will be such that b = depth(x) mod 2. To reach the parent of a node,
simply keep following the “right” pointers until the parity of the boolean value
changes. To find all the children of a node, start by finding x.left, then follow

7

Algorithm 15 COMPACTIFY-LIST(L,F)

if n=m then
return

end if
e = max{maxi∈[m]{|key[i]|},maxi∈L{|key[i]|}}
increase every element of key[1..m] by 2e
for every element of L, if its key is greater than e, reduce it by 2e
f = 1
while key[f] < e do

f + +
end while
a = L.head
if a > m then

next[prev[f]] = next[f]
prev[next[f]] = prev[f]
next[f] = next[a]
key[f] = key[a]
prev[f] = prev[a]
FREE −OBJECT (a)
f + +
while key[f] < e do

f + +
end while

end if
while a 6= L.head do

if a > m then
next[prev[f]] = next[f]
prev[next[f]] = prev[f]
next[f] = next[a]
key[f] = key[a]
prev[f] = prev[a]
FREE −OBJECT (a)
f + +
while key[f] < e do

f + +
end while

end if
end while

8

Algorithm 16 PRINT-TREE(T.root)

if T.root == NIL then
return

else
Print T.root.key
PRINT-TREE(T.root.left)
PRINT-TREE(T.root.right)

end if

Algorithm 17 INORDER-PRINT(T)

let S be an empty stack
push(S, T)
while S is not empty do

U = pop(S)
if U 6= NIL then

print U.key
push(S,U.left)
push(S,U.right)

end if
end while

Algorithm 18 PRINT-TREE(T.root)

if T.root == NIL then
return

else
Print T.root.key
x = T.root.left− child
while x 6= NIL do

PRINT-TREE(x)
x = x.right− sibling

end while
end if

9

Algorithm 19 INORDER-PRINT’(T)

a = T.left
prev = T
while a 6= T do

if prev = a.left then
print a.key
prev = a
a = a.right

else if prev = a.right then
prev = a
a = a.p

else if prev = a.p then
prev = a
a = a.left

end if
end while
print T.key
a = T.right
while a 6= T do

if prev = a.left then
print a.key
prev = a
a = a.right

else if prev = a.right then
prev = a
a = a.p

else if prev = a.p then
prev = a
a = a.left

end if
end while

10

the “right” pointers until the parity of the boolean value changes, ignoring this
last node since it will be x.
Problem 10-1

For each, we assume sorted means sorted in ascending order
unsorted, single sorted, single unsorted, double sorted, double

SEARCH(L, k) n n n n
INSERT (L, x) 1 1 1 1
DELETE(L, x) n n 1 1

SUCCESSOR(L, x) n 1 n 1
PREDECESSOR(L, x) n n n 1

MINIMUM(L, x) n 1 n 1
MAXIMUM(L, x) n n n 1

Problem 10-2

In all three cases, MAKE-HEAP simply creates a new list L, sets L.head =
NIL, and returns L in constant time. Assume lists are doubly linked. To realize
a linked list as a heap, we imagine the usual array implementation of a binary
heap, where the children of the ith element are 2i and 2i + 1.

a. To insert, we perform a linear scan to see where to insert an element such
that the list remains sorted. This takes linear time. The first element in the
list is the minimum element, and we can find it in constant time. Extract-min
returns the first element of the list, then deletes it. Union performs a merge
operation between the two sorted lists, interleaving their entries such that
the resulting list is sorted. This takes time linear in the sum of the lengths
of the two lists.

b. To insert an element x into the heap, begin linearly scanning the list until
the first instance of an element y which is strictly larger than x. If no such
larger element exists, simply insert x at the end of the list. If y does exist,
replace yt by x. This maintains the min-heap property because x ≤ y and
y was smaller than each of its children, so x must be as well. Moreover, x
is larger than its parent because y was the first element in the list to exceed
x. Now insert y, starting the scan at the node following x. Since we check
each node at most once, the time is linear in the size of the list. To get the
minimum element, return the key of the head of the list in constant time.

To extract the minimum element, we first call MINIMUM. Next, we’ll replace
the key of the head of the list by the key of the second smallest element y
in the list. We’ll take the key stored at the end of the list and use it to
replace the key of y. Finally, we’ll delete the last element of the list, and call
MIN-HEAPIFY on the list. To implement this with linked lists, we need to
step through the list to get from element i to element 2i. We omit this detail
from the code, but we’ll consider it for runtime analysis. Since the value of
i on which MIN-HEAPIFY is called is always increasing and we never need

11

to step through elements multiple times, the runtime is linear in the length
of the list.

Algorithm 20 EXTRACT-MIN(L)

min = MINIMUM(L)
Linearly scan for the second smallest element, located in position i.
L.head.key = L[i]
L[i].key = L[L.length].key
DELETE(L, L[L.length])
MIN-HEAPIFY(L[i], i)
return min

Algorithm 21 MIN-HEAPIFY(L[i],i)

1: l = L[2i].key
2: r = L[2i + 1].key
3: p = L[i].key
4: smallest = i
5: if L[2i] 6= NIL and l < p then
6: smallest = 2i
7: end if
8: if L[2i + 1] 6= NIL and r < L[smallest] then
9: smallest = 2i + 1

10: end if
11: if smallest 6= i then
12: exchange L[i] with L[smallest]
13: MIN-HEAPIFY(L[smallest],smallest)
14: end if

Union is implemented below, where we assume A and B are the two list
representations of heaps to be merged. The runtime is again linear in the
lengths of the lists to be merged.

c. Since the algorithms in part b didn’t depend on the elements being distinct,
we can use the same ones.

Problem 10-3

a. If the original version of the algorithm takes only t iterations, then, we have
that it was only at most t random skips though the list to get to the desired
value, since each iteration of the original while loop is a possible random
jump followed by a normal step through the linked list.

b. The for loop on lines 2-7 will get run exactly t times, each of which is constant
runtime. After that, the while loop on lines 8-9 will be run exactly Xt times.
So, the total runtime is O(t + E[Xt]).

12

Algorithm 22 UNION(A,B)

1: if A.head = NIL then
2: return B
3: end if
4: i = 1
5: x = A.head
6: while B.head 6= NIL do
7: if B.head.key ≤ x.key then
8: Insert a node at the end of list B with key x.key
9: x.key = B.head.key

10: Delete(B,B.head)
11: end ifx = x.next
12: end while
13: return A

c. Using equation C.25, we have that E[Xt] =
∑∞

i=1 Pr(Xt ≥ i). So, we need
to show that Pr(Xt ≥ i) ≤ (1 − i/n)t. This can be seen because having Xt

being greater than i means that each random choice will result in an element
that is either at least i steps before the desired element, or is after the desired
element. There are n− i such elements, out of the total n elements that we
were pricking from. So, for a single one of the choices to be from such a range,
we have a probability of (n − i)/n = (1 − i/n). Since each of the selections
was independent, the total probability that all of them were is (1 − i/n)t,
as desired. Lastly, we can note that since the linked list has length n, the
probability that Xt is greater than n is equal to zero.

d. Since we have that t > 0, we know that the function f(x) = xt is increasing,
so, that means that bxct ≤ f(x). So,

n−1∑
r=0

rt =

∫ n

0

brctdr ≤
∫ n

0

f(r)dr =
nt+1

t + 1

e.

E[Xt] ≤
n∑

r=1

(1− r/n)t =

n∑
r=1

t∑
i=0

(
t

i

)
(−r/n)i =

t∑
i=0

n∑
r=1

(
t

i

)
(−r/n)i

=

t∑
i=0

(
t

i

)
(−1)i

(
ni − 1 +

n−1∑
r=0

(r)t

)
/n ≤

t∑
i=0

(
t

i

)
(−1)i

(
ni − 1 +

ni+1

i + 1

)
/n

≤
t∑

i=0

(
t

i

)
(−1)i

ni

i + 1
=

1

t + 1

t∑
i=0

(
t + 1

i + 1

)
(−n)i ≤ (1− n)t+1

t + 1

f. We just put together parts b and e to get that it runs in time O(t+n/(t+1)).
But, this is the same as O(t + n/t).

13

g. Since we have that for any number of iterations t that the first algorithm takes
to find its answer, the second algorithm will return it in time O(t + n/t). In
particular, if we just have that t =

√
n. The second algorithm takes time

only O(
√
n). This means that tihe first list search algorithm is O(

√
n) as

well.

h. If we don’t have distinct key values, then, we may randomly select an element
that is further along than we had been before, but not jump to it because
it has the same key as what we were currently at. The analysis will break
when we try to bound the probability that Xt ≥ i.

14

