
Appendix B

Michelle Bodnar, Andrew Lohr

August 31, 2015

Exercise B.1-1
FIrst we consider

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

For the first picture, we can see that the shaded regions are all the regions
that are in A and also in either B or C, and so are in the set described on the
left hand side. Since the green and gray shaded regions are in both A and B,

1

they are in the right hand side, also, the red and gray regions are in A and C
and so are also in the right hand side. There aren’t any other regions that are
either both in A and B or both in A and C, so the shaded regions are the right
hand side of the equation as well.

Next we consider

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

The ony regions in B ∩C are blue and purple. All the other colored regions
are in A. So, the shaded regions are exactly the left hand side. To see what is
in the right hand side, we see what is both in A ∪ B and A ∩ C. Individually
both both contain all of the shaded regions plus one of the white regions. Since
the white region contained differs, their intersection is all of the shaded regions.
Exercise B.1-3

Exercise B.1-5
For each of the elements of S, some subset of S can either contain that element
or not contain that element. If the decision differs for any of the |S| many
elements, then you’ve just created a distinct set. Since we make a decision be-
tween two options |S| many times, the total number of possible sets is 2|S|. It
can be thought of as the number of leaves in a complete binary tree of depth |S|.

2

Exercise B.2-1
To see that it is a partial ordering, we need to show it is reflexive, antisymmetric,
and transitive. To see that it is reflexive, we need to show S ⊆ S. That is, for
every x ∈ S, s ∈ S, which is a tautology. To see that it is antisymmetric, we
need that if S1 6= S2 and S1 ⊆ S2 then S2 6⊆ S1. Since S1 6= S2 there is some
element that is in one of them but not in the other. Since S1 6= S2, we know
that that element must be in S2 because if it were in S1 it would be in S2.
Since we have an element in S2 not in S1, we have S2 6⊆ S1. Lastly, we show
transitivity, suppose S1 ⊆ S2 ⊆ S3. This means that any element that is in S1

is in S2. But since it is in S2, it is in S3. Therefore, every element in S1 is in
S3, that is S2 ⊆ S3.

To see that it is not a total order, consider the elements {1, 2} and {2, 3}.
Neither is contained in the other, so there is no proscribed ordering between
the two based off of inclusion. If it were a total ordering, we should be able to
compare any two elements, which we just showed we couldn’t.

Exercise B.2-3

a. Consider the set of vertices in some non-complete, non-empty graph where
we make two vertices related if they are adjacent or the same vertex.

b. Consider the vertices in a digraph where we have aRb if there is some possibly
empty path from a to b. For a concrete example, suppose we have only the
set {0, 1} and the relations 0R0, 0R1, and 1R1.

c. Consider the relation that makes no two elements related. This satisfies both
the symmetric and transitive properties, since both of those require that cer-
tain elements are related to conclude that some particular other elements are
related.

Exercise B.2-5
Professor Narcissus is full of himself! The relation that makes no two elements
related to each other is both symmetric and transitive, but is not reflexive.

Exercise B.3-1

a. Since f is injective, for every element in it’s range, there is at most one
element that maps to it. So, we proceed by induction on the number of
elements in the domain of the function. If there is only a single element
in the domain, since the function has to map to something, we have that
|B| ≥ 1 = |A|. Suppose that all functions that are on a domain of size n
satisfy this relation. Then, look at where that n + 1st element gets mapped.
This point will never be mapped to by any of the other elements of the
domain. So, we can think of restricting the function to just the first n

3

elements, and use the inductive assumption to get the desired relation of the
two sets.

b. As a base case, assume that |B| = 1. Then, since the function is surjective,
some element must map to that, so, |A| ≥ 1 = |B|. Not, suppose it is true
for all function with a range of size at most n. Then, just look at all the
elements that map to the n+1st element, there is at least one by surjectivity.
This gets us that |A| ≥ 1 + |A′| ≥ 1 + |B′| = |B|.

Exercise B.3-3
Define R−1 by aR−1b if and only if bRa. This clearly swaps the domain and
range for the relation, and so, if R was bijective, it is the inverse function. If R
was not bijective, then R−1 might not even be a function.

Exercise B.4-1
Let f(u, v) be equal to 1 if u shook hands with v. Then,

∑
v∈V degree(v) =∑

v∈V
∑

u∈V f(v, u) then, since handshaking is symmetric, we are counting
both when u shakes v hand and when v shakes u’s hand. So, this sum is∑

e∈E 2 = 2|E|.

Exercise B.4-3
We proceed by induction on the number of vertices. If there is a single vertex,
then the inequality trivially holds since the left hand side is the size of a set and
the right hand side is zero. For the inductive case, pick one vertex in particular.
We know that that vertex must have at least one edge to the rest of the vertices
because the graph is connected. So, when we take the induced subgraph on the
rest of the vertices, we are decreasing the number of edges by at least one. So,
|E| ≥ 1 + |E′| ≥ 1 + |V ′| − 1 = |V | − 1.

Exercise B.4-5
The undirected version of the graph in B.2(a) is on the same vertex set, but
has E = {(1, 2), (2, 4), (2, 5), (4, 1), (4, 5), (6, 3)}. That is, we threw out the
antisymmetric edge, and the self edge. There is also a difference in that now
the edges should be viewed as unordered unlike before.

The directed version of B.2(b) looks the same, except it has arrows drawn
in. One from 2 to 1, one from 1 to 5, one from 2 to 5, and one from 3 to 6.

Exercise B.5-1
There are three such rooted trees:

4

x

y z

x

y

z

x

z

y

The ordered trees are those listed above, in addition to the tree

x

z y

The Binary trees are all ten of the following:

x

y

NIL NIL

z

NIL NIL

x

y

z

NIL NIL

NIL

NIL

5

x

NIL y

z

NIL NIL

NIL

x

y

NIL z

NIL NIL

NIL

x

NIL y

NIL z

NIL NIL

6

x

z

NIL NIL

y

NIL NIL

x

z

y

NIL NIL

NIL

NIL

x

NIL z

y

NIL NIL

NIL

7

x

z

NIL y

NIL NIL

NIL

x

NIL z

NIL y

NIL NIL

Exercise B.5-3
As a base case, consider the binary tree that consists of a single node. This
tree has no degree two nodes and one leaf, so, the number of degree two nodes
is one less than the number of leaves. As an inductive step, suppose it is true
for all binary trees with at most n degree two nodes. Then, let G be a binary
tree with n + 1 internal nodes. Let v be the first node, possibly the leaf itself,
that is the child of a degree two node, and can be obtained by taking the parent
pointer from the leaf. Then, consider the tree obtained by removing v and all
its children. Doing so removes only one leaf, and it makes the parent of v drop
to being degree 2. None of the children of v were degree 2 because otherwise
we would of stopped earlier when we were selecting v. Since we have decreased
the number of degree two nodes and leaves both by 1, we have completed the
inductive case, because if |T ′| is the modified tree, the number of leaves in T is
one more than that in T ′ which means it is one more than the number of degree
2 nodes in T ′, which is the number of degree two nodes in T .

Since a full binary tree has each internal node with degree two, this result
gets us that the number of internal nodes in a full binary tree is one more than
the number of leaves.

Exercise B.5-5

8

We will perform structural induction. For the empty tree that has n = 0, the
equation is obviously satisfied. Now, let r be the root of the tree T , and let TL

and TR be the left and right subtrees respectively. By the inductive hypothesis,
we may assume that eL = iL + 2nL and eR = iR + 2nR. Then, since being
placed as a child of the root adds one to the depth of each of the nodes in both
TL and TR, we have that i = iL + iR + nL + nR and

e =eL + |leaves(TL)|+ eR + |leaves(TR)|
=eL + eR + |leaves(T)|
=iL + 2nL + iR + 2nR + |leaves(T)|
=i + nL + nR + |leaves(T)|
=i + n− 1 + |leaves(T)|

By problem B.5-3, since the tree is full, we know that |leaves(T)| is one more
than the number of internal nodes of T . So, e = i+2n, completing the induction.

Exercise B.5-7
Suppose to a contradiction that there was some binary tree with more than 2
leaves that had no subtree with a number of leaves in the desired range. Since
L > 1, the root is not a leaf. Now, define the sequence x0 = root, xi+1 is the
larger(more leaves) of the children of xi, until we have reached a root. Now,
we consider the number of leaves in the subtree rooted at each xi. For x0 it
is L, which is too large, and at xh, it is 1 which is not too large. Now, we
keep incrementing from x0 to x1 to x2, and so on until we have some number
of leaves that falls in the desired range. If it happens we are done and have
contradicted the assumption that this binary tree didn’t have such a subtree.
Since it doesn’t that means there is some step where the number of leaves jumps
from more than 2L/3 to less than L/3, Since both of the children of the next
xi were less than L/3, their sum cannot be more than 2L/3, a contradiction.
Problem B-1

a. If the tree is unrooted, pick an arbitrary node to be the root. Assign color 0
to all nodes that are at an even height, and assign color 1 to all nodes that
are at an odd height. Since the child of any node has height one greater,
there will never be two adjacent nodes that have received the same color.

b. We show the following implications in order to get equivalence of all three

1⇒ 2 Since the graph is bipartite, we can partition the vertices into two sets
L and R so that there are no edges going between vertices in L and no
edges going between vertices in R. This means that we can assign color
0 to all vertices in L and color 1 to all vertices in R without having any
edges going between two vertices of the same color.

9

2⇒ 3 Suppose to a contradiction that there was a cycle of odd length, but we
did have a valid two coloring. As we go along the cycle, each time we
go to the next vertex, the color must change because no two adjacent
vertices can have the same color. If we go around the cycle like this
though, we have just flipped the color an odd number of times, and
have returned back to the original color, a contradiction.

3⇒ 2 If G has no cycles of an odd length, then we can just perform the greedy
operation to two color. That is, we pick a vertex, color it arbitrarily,
then, for any vertex adjacent to a colored vertex, we color it the opposite
color. If this process doesn’t end up coloring everything, i.e. the graph
is disconnected, we repeat it. Since the only way this process could fail
is if there is an odd length cycle, it provides a two coloring, proving that
the graph is two colorable.

2⇒ 1 Partition the vertices based on what color they received. Since there
are no edges going between the vertices of the same color, there won’t
be any edges going between vertices that are in the same part in the
partition.

c. Consider the process where we pick an arbitrary uncolored vertex and color it
an arbitrary color that is not the color of any of its neighbors. Since a vertex
can only have at most d neighbors, and there are d+ 1 colors to choose from,
this procedure can always be carried out. Also, since we are maintaining at
each step that there are no two adjacent vertices that have been colored the
same, we have that the end result of all the coloring is also valid.

d. Let V ′ be the set of vertices whose degree is at least
√
|E|. The total number

of edges incident to at least one of these vertices is at least
|V ′|
√
|E|

2 by exercise
B.4-1. Since this also has to be bounded by the total number of edges in the

graph, we have that
|V ′|
√
|E|

2 ≤ |E|, which gets us that |V ′| ≤ 2
√
|E|. So,

we’ll assign all of the vertices in V ′ their own distinct color. Then, so long as
we color the rest of the edges with colors different from those used to color
V ′, the edges between V ′ and the rest of the vertices won’t be important
for affecting the validity of the coloring. So, we look at the graph induced
on the rest of the vertices. This graph is degree at most

√
|E| because

we already removed all the vertices of high degree. This means that by
the previous part, we can color it using at most

√
|E| + 1 colors. Putting

it together, the total number of colors used to obtain a valid coloring is
2
√
|E|+

√
|E + 1 ∈ O(

√
|E|) = O(

√
|V |).

Problem B-3

a. Suppose that n ≥ 4, as all smaller binary trees can be easily enumerated
and this fact checked for. Start at the root, let that be x0, then, let xi+1

be the larger child of xi, or it’s only child if there is just one. Eventually
this process will stop once it has reached a root. Let s(v) be the size of the

10

subtree rooted at v. Since we always pick the larger of the two subtrees, we
have that s(xi) ≤ 2s(xi+1) + 1. So, if we have that s(xi+1) ≤ n/4, then, we
have that s(xi) ≤ 2n/4 + 1 ≤ 3n/4. Since eventually this sequence goes to
1, which is below the range, and it starts at n, which is above, we must have
that at some point it dips below, the parent of this node is the one that we
need to snip off of the original tree to get the desired size subtree.

b. Take a binary tree on four vertices as follows:

x

y

a z

Where it is unimportant whether y is the left or right child of x. Then,
any cut that is made of the three edges in the graph results in there being
one set of vertices of size 3 that are connected and one vertex that is all by
its lonesome self. This means that the larger of the two sets the vertices is
partitioned into has size 3 = (3/4) · n.

c. We will make a single cut to the original tree to take off a piece that is less
than or equal to bn2 c. As in part a, we let x0 be the root, and let xi+1 be
the larger child of xi. We show that the size of the subtree rooted at xi, say
s(xi) can old drop by at most a factor of 3. To do this, we use the fact that

s(xi) ≤ 2s(xi+1) + 1. So, if s(xi+1) ≤ s(xi)
3 , then,

s(xi) ≤ 2s(xi+1) + 1 ≤ 2s(xi)

3
+ 1

s(xi)

3
≤ 1

s(xi) ≤ 3

However, for there to even be a xi+1, it must have size at least one, so, even
then, we have that has dropped by at most a factor of 3.

This means that we can always select a tree that is less than a fact of three
below bn2 c. So, what we do is cut off that subtree, decrease the amount we
are trying to cut off by that amount, and then continue. Each cut doing this
procedure must decrease the most significant digit of the ternary representa-
tion of the amount need to be cut off by 1. This means that it needs at most
2 log3(n) many cuts, but this is O(lg(n)), so, we are done.

11

