Notes on Lecture of September 19, 2011 - in particular on filling the gap

Theorem Suppose that p is a real number and that $0<p<1$. There is a positive real number r such that $r^{2}=p$.
Summary of the proof from lecture with a patch for the gap
We first saw an inductive definition that produced, for each positive integer n, an n-place decimal fraction x_{n} such that

$$
0 \leq x_{n}=0 . d_{1} d_{2} \ldots d_{n}
$$

where each d_{k} is a decimal digit, and

$$
\left(x_{n}\right)^{2} \leq p<\left(x_{n}+10^{-n}\right)^{2}
$$

Note that x_{n} is the largest n-place decimal fraction whose square is not larger than p. Also note that the set of all these x_{n} is bounded above by 1 and is non-empty. Thus the Axiom of Completeness gives us the real number r defined by

$$
r=\operatorname{lub}\left(\left\{x_{n}: n \in \mathbb{N}\right\}\right.
$$

Since we have, for all positive integers $n, 0 \leq r \leq x_{n}$ we can conclude that

$$
\text { for all positive integers } n, 0 \leq\left(x_{n}\right)^{2} \leq r^{2}
$$

The gap I left was the absence of a proof for the claim
(C) for all positive integers $k, r^{2} \leq\left(x_{k}+10^{-k}\right)^{2}$.

To prove (C) it is enough to prove
(C') for all positive integers $k, r \leq\left(x_{k}+10^{-k}\right)$.
For each positive integer k introduce the notation $y_{k}=x_{k}+10^{-k}$ and note that $x_{k}<y_{k}$.
Step 1: Show that for all positive integers $n, x_{n} \leq x_{n+1}$ and conclude that whenever $n<m$ then $x_{n} \leq x_{m}$.
Consider an arbitrary positive integer n. Recall that $d_{n+1} \in \mathbb{D}$ and thus $0 \leq d_{n+1}+1 \leq 10$. Now

$$
x_{n} \leq x_{n}+d_{n+1} \cdot 10^{-(n+1)}=x_{n+1}
$$

Step 2: Show that for all positive integers $k, y_{k+1} \leq y_{k}$ and conclude that whenever $j<k$ then $y_{k} \leq y_{j}$.

$$
y_{k+1}=x_{k+1}+10^{-(k+1)}
$$

by the definition of y_{k+1}
$y_{k+1}=\left[x_{k}+d_{k+1} 10^{-(k+1)}\right]+10^{-(k+1)} \quad$ by the definition of x_{k+1}
$y_{k+1}=x_{k}+\left[d_{k+1}+1\right] 10^{-(k+1)} \quad$ by arithmetic
$y_{k+1} \leq x_{k}+(9+1) 10^{-(k+1)} \quad$ since d_{k+1} is a decimal digit
$y_{k+1} \leq x_{k}+10^{-k}=y_{k} \quad$ by arithmetic and the definition of y_{k}.
Step 3: Show that for every positive integer k, y_{k} is an upper bound for the set of all x_{n}.
Consider an arbitrary k and treat it as fixed for the moment. Now consider an arbitrary n. We work by cases.

Case 1: $n=k$. Then By step 1 we already know that $x_{n}=x_{k}<y_{k}$.
Case 2: $n>k$. Use the second part of Step 2. See that $x_{n}<y_{n} \leq y_{k}$.
Case 3: $n<k$. Use the second part of Step 1. See that $x_{n} \leq x_{k}<y_{k}$.
So far we know that r is the least upper bound of the set of all x_{n} and that each y_{k} is one upper bound for that set. Thus for all indices k including the case $n=k$, we have even more than (C'). We have, for all k

$$
0 \leq x_{k} \leq r=\operatorname{lub}\left(\left\{x_{n}: n \in \mathbb{N}\right\}\right) \leq y_{k}=x_{k}+d_{k} 10^{-k}
$$

(C) follows from (C^{\prime}).

My gap is now filled. We go back to the summary of Monday's lecture. Consider an arbitrary positive integer n. We have both

$$
\left(x_{n}\right)^{2} \leq p<\left(x_{n}+10^{-n}\right)^{2}
$$

and, using (C) with $k=n$,

$$
\left(x_{n}\right)^{2} \leq r^{2} \leq\left(x_{n}+10^{-n}\right)^{2}
$$

Thus we get

$$
0 \leq\left|r^{2}-p\right| \leq\left(x_{n}+10^{-n}\right)^{2}-\left(x_{n}\right)^{2}=\left[\left(x_{n}+10^{-n}\right)+\left(x_{n}\right)\right]\left[\left(x_{n}+10^{-n}\right)-\left(x_{n}\right)\right]=\left[2 x_{n}+10^{-n}\right]\left[10^{-n}\right]
$$

from which it follows that

$$
0 \leq\left|r^{2}-p\right| \leq\left[2 x_{n}+10^{-n}\right]\left[10^{-n}\right] \leq(2.1) 10^{-n}<2.1 \times n^{-1}
$$

since we know that $x_{n} \leq 1$ and $10^{-n} \leq 10^{-1}$. Divide through by 2.1 .

$$
0 \leq \frac{\left|r^{2}-p\right|}{2.1} \leq \frac{1}{n}
$$

Since n was arbitrary we have

$$
0 \leq \frac{\left|r^{2}-p\right|}{2.1} \leq g l b\left(\left\{n^{-1}: n \in \mathbb{N}\right\}\right)=0
$$

from which we must conclude that $\left|r^{2}-p\right|=0$ and $r^{2}=p$.

