
Notes on Lecture of September 19, 2011 - in particular on filling the gap

Theorem Suppose that p is a real number and that 0 < p < 1. There is a positive real number r such
that r2 = p.

Summary of the proof from lecture with a patch for the gap
We first saw an inductive definition that produced, for each positive integer n, an n-place decimal fraction

xn such that

0 ≤ xn = 0.d1d2...dn

where each dk is a decimal digit, and

(xn)2 ≤ p < (xn + 10−n)2.

Note that xn is the largest n-place decimal fraction whose square is not larger than p. Also note that
the set of all these xn is bounded above by 1 and is non-empty. Thus the Axiom of Completeness gives us
the real number r defined by

r = lub({xn : n ∈ N}.

Since we have, for all positive integers n, 0 ≤ r ≤ xn we can conclude that
for all positive integers n, 0 ≤ (xn)2 ≤ r2.

The gap I left was the absence of a proof for the claim

(C) for all positive integers k, r2 ≤ (xk + 10−k)2.
To prove (C) it is enough to prove

(C’) for all positive integers k, r ≤ (xk + 10−k).

For each positive integer k introduce the notation yk = xk + 10−k and note that xk < yk.

Step 1: Show that for all positive integers n, xn ≤ xn+1 and conclude that whenever n < m then xn ≤ xm.

Consider an arbitrary positive integer n. Recall that dn+1 ∈ D and thus 0 ≤ dn+1 + 1 ≤ 10. Now

xn ≤ xn + dn+1 · 10−(n+1) = xn+1.

Step 2: Show that for all positive integers k, yk+1 ≤ yk and conclude that whenever j < k then yk ≤ yj.
yk+1 = xk+1 + 10−(k+1) by the definition of yk+1

yk+1 = [xk + dk+1 10−(k+1)] + 10−(k+1) by the definition of xk+1

yk+1 = xk + [dk+1 + 1] 10−(k+1) by arithmetic

yk+1 ≤ xk + (9 + 1) 10−(k+1) since dk+1 is a decimal digit

yk+1 ≤ xk + 10−k = yk by arithmetic and the definition of yk.

Step 3: Show that for every positive integer k, yk is an upper bound for the set of all xn.

Consider an arbitrary k and treat it as fixed for the moment. Now consider an arbitrary n. We work by
cases.

Case 1: n = k. Then By step 1 we already know that xn = xk < yk.
Case 2: n > k. Use the second part of Step 2. See that xn < yn ≤ yk.
Case 3: n < k. Use the second part of Step 1. See that xn ≤ xk < yk.

So far we know that r is the least upper bound of the set of all xn and that each yk is one upper bound
for that set. Thus for all indices k including the case n = k, we have even more than (C’). We have, for all k

0 ≤ xk ≤ r = lub({xn : n ∈ N}) ≤ yk = xk + dk 10−k
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(C) follows from (C’).
My gap is now filled. We go back to the summary of Monday’s lecture. Consider an arbitrary positive

integer n. We have both

(xn)2 ≤ p < (xn + 10−n)2

and, using (C) with k = n,

(xn)2 ≤ r2 ≤ (xn + 10−n)2.

Thus we get

0 ≤ |r2 − p| ≤ (xn + 10−n)2 − (xn)2 = [(xn + 10−n) + (xn)][(xn + 10−n)− (xn)] = [2xn + 10−n][10−n]

from which it follows that

0 ≤ |r2 − p| ≤ [2xn + 10−n][10−n] ≤ (2.1)10−n < 2.1× n−1

since we know that xn ≤ 1 and 10−n ≤ 10−1. Divide through by 2.1.

0 ≤ |r
2 − p|
2.1

≤ 1

n

Since n was arbitrary we have

0 ≤ |r
2 − p|
2.1

≤ glb({n−1 : n ∈ N}) = 0

from which we must conclude that |r2 − p| = 0 and r2 = p.
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