Homework, Math 311:03, Fall 2009

Sample Solutions to Various Problems from Chapter 0

- 0.1#6 TASK Suppose that A, B, C are sets.
 - (a) Prove that

If
$$A \subseteq B$$
, then $C - B \subseteq C - A$.

(b) Either prove the converse or provide a counterexample.

PROOF

(a) Assume that $A \subseteq B$. [Note: Our book uses \subset for the weak inclusion. I am using \subseteq to emphasize that we are not limiting ourselves to the strong inclusion, the one that rules out equality.] I must show that

for all
$$x, x \in C - B \Longrightarrow x \in C - A$$
.

So consider an arbitrary x and assume $x \in C - B$. This means $x \in C$ and $x \notin B$. Since $A \subseteq B$ and $x \notin B$, we learn that $x \notin A$. Thus $x \in C - A$. \square

(b) The converse says

If
$$C - B \subseteq C - A$$
, then $A \subseteq B$.

This need not be true. Consider the example

$$A = \{1\}, B = C = \phi$$

Then we have

$$C - A = \phi$$
 and $C - B = \phi$, so $C - B \subseteq C - A$ but $A \subseteq B$

0.1#10 TASK b. Give a concise description of the set $B = \bigcup_{n=1}^{\infty} (-n, n)$.

RESULT $B = \mathbb{R}$

REASONING By definition

$$B = \{x : \exists n \text{ in } \mathbb{N}, \ x \in (-n, n)\}\$$

B is a union of subsets of \mathbb{R} , so B is a subset of \mathbb{R} . To show the reverse inclusion, consider an arbitrary real r. We can find a positive integer n_r such that $-n_r < r < n_r$. So r belongs to the interval $(-n_r, n_r)$. Thus there is an index n, namely $n = n_r$, such that $r \in (-n, n)$. This shows that $r \in B$.

TASK d. Give a concise description of the set $D \doteqdot \bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, 2 + \frac{1}{n}\right)$.

RESULT

$$D = \left(-\frac{1}{1}, 2 + \frac{1}{1}\right) = (-1, 3)$$

REASONING By definition

$$D = \left\{ x : \exists n, \ x \in \left(-\frac{1}{n}, \ 2 + \frac{1}{n} \right) \right\}.$$

Suppose that $x \in D$. Then we can and do pick a positive integer, call it n_o ,

$$x \in \left(-\frac{1}{n_o} \ , \ 2 + \frac{1}{n_0}\right)$$

Since $n_o \geq 1$, we get

$$\frac{1}{n_o} \le 1$$
 so $-1 \le -\frac{1}{n_o} < x < 2 + \frac{1}{n_o} < 2 + 1$ and $x \in (-1, 3)$.

This shows that

$$D \subseteq (-1,3)$$
.

Now suppose that $x \in (-1,3)$. Then with $n = n_1 = 1$ we get

$$x \in (-1,3) = \left(-\frac{1}{n_1}, 2 + \frac{1}{n_1}\right)$$
 so $x \in D$.

0.3 # 20 TASK Prove that

$$\forall n \text{ in } \mathbb{N}, \ 1 + 3 + \dots + (2n - 1) = n^2$$

PROOF This calls for a proof by induction. For each positive integer n, let P(n) denote the assertion

The sum of the first n odd integers is n^2

Base Step. Consider n = 1. The sum of the first n odd integers is just 1. Also $n^2 = 1$. So the assertion P(1) is true.

Induction Step. Suppose that n is an arbitrary positive integer and that P(n) is true. We must deduce the truth of P(n+1).

The sum of the first n+1 odd integers is the sum of the first n odd integers plus the $(n+1)^{st}$. This sum is, by the induction hypothesis just $n^2+(2n+1)$. But

$$n^2 + (2n+1) = (n+1)^2$$

and this gives us

The sum of the first n+1 odd integers is $(n+1)^2$

which is exactly P(n+1).

0.3 # 24 TASK: Define a function f from N into N by

$$f(1) = 1$$
 $f(2) = 2$ $f(3) = 3$ and whenever $n \ge 4$, $f(n) = f(n-1) + f(n-2) + f(n-3)$.

Show that

for all
$$n$$
 in \mathbb{N} , $f(n) \leq 2^n$

EXPLORATION We check the assertion for several values of n

when
$$n = 1$$
, $f(n) = f(1) = 1 \le 2 = 2^1 = 2^n$
when $n = 2$, $f(n) = f(2) = 2 \le 4 = 2^2 = 2^n$
when $n = 3$, $f(n) = f(3) = 3 \le 8 = 2^3 = 2^n$
when $n = 4$, $f(n) = f(4) = f(3) + f(2) + f(1) = 3 + 2 + 1 \le 16 = 2^4 = 2^n$
when $n = 5$, $f(n) = f(5) = f(4) + f(3) + f(2) = 6 + 3 + 2 \le 32 = 2^5 = 2^n$

PROOF

For each n in \mathbb{N} , let P(n) denote the assertion

for all positive integers
$$k$$
 with $k \le n$, $f(k) \le 2^k$.

We have already seen that P(n) is true whenever $n \in \{1, 2, 3, 4\}$.

I now prove by induction that for all integers n with $n \geq 4$ that P(n) is true.

The base case is now the case n=4. P(4) was proved in the exploration. Suppose the $n \in \{k \text{ in } \mathbb{N} : k \geq 4\}$ and P(n) is true. Note that since $n \geq 4, \ n-1 \in \mathbb{N}$ and $n-2 \in \mathbb{N}$ and $n-3 \in \mathbb{N}$. We will deduce that P(n+1) is also true. By P(n)

$$f(n) \le 2^n$$
 $f(n-1) \le 2^{n-1}$ and $f(n-2) \le 2^{n-2}$.

Thus

$$f(n+1) = f(n) + f(n-1) + f(n-2)$$

$$\leq 2^{n} + 2^{n-1} + 2^{n-2} = 2^{n-2} (2^{2} + 2^{1} + 1)$$

$$\leq 2^{n-2} (7) < 2^{n-2} \cdot 8 = 2^{(n-2)+3} = 2^{n+1}$$

By the induction hypothesis P(n) we know that $f(k) \leq 2^k$ whenever $k \leq n$. We have just shown that $f(k) \leq 2^k$ whenever k = n + 1. Thus P(n + 1) follows.

0.4 # 32 TASK: Suppose that $n \in \mathbb{N}$. Let P_n denote the set of all polynomials of degree exactly n and integer coefficients. Show that P_n is countable.

EXPLORATION We will try to use the results of Section 0.4 to avoid doing hard work. So we know that

(Cor 0.15) any subset of a countable set is countable;

(Thm 0.16) the Cartesian product of two countable sets is countable, and thus by a simple induction the cartesian product of any finite number of countable sets is countable;

(Thm 0.17) a countable union of countable sets is countable. PROOF A polynomial of degree n with integer coefficients is a function of the form

$$g(x) = \sum_{k=0}^{n} c_k x^k$$

where each $c_k \in \mathbb{Z}$ and $c_n \neq 0$. Thus there is a one-one function f from P_n onto $\mathbb{Z} \times \mathbb{Z} \times ... \times \mathbb{Z} \times (\mathbb{Z} - \{0\})$ where we have n copies of \mathbb{Z} . This f is given by

$$f\left(\sum_{k=0}^{n} c_k x^k\right) = (c_0, c_1, ..., c_n)$$

Two polynomials are equal if and only if their ordered strings of coefficients are equal. So this function f is indeed one to one. By definition of degree n the function f is onto. Now the Cartesian product of n copies of \mathbb{Z} and one copy of $\mathbb{Z} - \{0\}$ is a product of a finite number of countable sets, so P_n a countable set and is thus countable.

0.4 #38 TASK Suppose that a < b and c < d. Show that $[a, b] \tilde{c}[c, d]$.

REMARK The statement is not true in the generality used in the text. The interval [0,0] is certainly not equivalent to the interval [0,1] — the first contains one and only one element, namely 0; the second is infinite since it contains the subset $\{1/k : k \in \mathbb{N}\}$ which is not finite.

PROOF It is easy to construct a polynomial function of degree 1 that maps [a, b] one to one onto [c, d]. The graph of this polynomial is the straight line segment with endpoints (a, c) and (b, d). Take

$$m = \frac{d-c}{b-a}$$
 and $f(x) = b + m(x-a)$

Since m > 0 it is easy to see that

whenever
$$a \le r < s \le b$$
 then $c = f(a) \le f(r) < f(s) \le f(b) = d$

and thus that f maps [a, b] one-to-one into [c, d]. It remains to show that f is onto. Consider an arbitrary y in [c, d]. I need to show that there is an x in [a, b] such that f(x) = y. Now for any real x

$$f(x) = y \iff m(x-a) + c = y \iff \frac{y-c}{m} = x-a \iff x = a + \frac{y-c}{m}$$

We are done as soon as we see why $a + (y - c)/m \in [a, b]$. Since $y \leq [c, d]$ and m > 0 we get

$$c \le y \le d$$
 and so $0 \le \frac{y-c}{m} \le \frac{d-c}{m} = b-a$ and so $a \le a + \frac{y-c}{m} \le b$ which means $a + \frac{y-c}{m} \in [a,b]$.

0.5 #41 TASK Suppose that 0 < a < b. Show that $0 < a^2 < b^2$ and $0 < \sqrt{a} < \sqrt{b}$.

REMARK For this problem we will assume that every positive real r have a unique positive real square root denoted by \sqrt{r} .

PROOF

Step 1. Show that $0 < a^2$. This follows by the order axiom that says the product of positive reals is positive.

Step 2. Show that $a^2 < b^2$. By hypothesis, b - a is positive. Now

$$b^{2} = [a + (b - a)]^{2} = a^{2} + 2 \cdot a \cdot (b - a) + (b - a)^{2}$$

Note that both $2 \cdot a \cdot (b-a)$ and $(b-a)^2$ are positive since they are products of positive reals. Thus

$$2 \cdot a \cdot (b-a) + (b-a)^2 > 0$$

and

$$b^{2} = a^{2} + 2 \cdot a \cdot (b - a) + (b - a)^{2} > a^{2}.$$

Step 3 Show that $0 < \sqrt{a} < \sqrt{b}$. By the meaning of \sqrt{a} we know $\sqrt{a} > 0$. To get the second inequality we appeal to trichotomy.

Suppose $\sqrt{a} = \sqrt{b}$. Then

$$a = (\sqrt{a})^2 = (\sqrt{b})^2 = b$$
, which is false.

So we learn that $\sqrt{a} \neq \sqrt{b}$.

Suppose that $\sqrt{b} < \sqrt{a}$. Then by the argument of Step 2 we would learn that

$$b = (\sqrt{b})^2 < (\sqrt{a})^2 = a$$
, which is false.

So we learn that $\sqrt{b} \not< \sqrt{a}$.

We must conclude then that $\sqrt{a} < \sqrt{b}$.

0.5 #44 TASK Suppose that x = lub(S). Show that for each positive ε there is an element s in S such that $x - \varepsilon < s \le x$.

REMARK Implicit in the hypothesis are the assumptions that $\phi \neq S \subseteq \mathbb{R}$ and $x \in \mathbb{R}$.

PROOF Consider and arbitrary positive ε . Since $x = \min(\mathcal{UB}(S))$ and $x - \varepsilon < x$ we know that $x - \varepsilon$ is not an upper bound for S. Thus there must be an s with the two properties $s \in S$ and $x - \varepsilon < s$. Pick one such and call it s_o . Since $s_o \in S$, we also know that s_o has the property that $s_o \leq x$. Thus there is an element in S, namely s_o , such that $x - \varepsilon < s_o \leq x$.