Axioms for the Real Number System

General introduction.

The real number system is composed of a set \mathbb{R}, a distinguished subset \mathbb{P}, and two binary operations + and \times. We use the notations \mathbf{R} and \mathbb{R} for both the set and the system, despite the ambiguity. When we use the term number we mean a real number. If we want to refer to any other number system we have to say so explicitly. The set \mathbb{P} contains the numbers we want to distinguish as positive numbers. The binary operation + will be the familiar operation of addition. The operation \times is the familiar operation of multiplication. We now restate these introductory ideas as axioms.
G.1. \mathbb{R} is a set.
G.2. There is a distinguished subset of \mathbb{R} called \mathbb{P}, the set of "positive" numbers.
G.3. There are two binary operations, + and \times on \mathbb{R}.

Recall that a binary operation on \mathbb{R} is a function from $\mathbb{R} \times \mathbb{R}$ into \mathbb{R}.

About Addition

A.1. For all x and y in $\mathbb{R}, x+y=y+x$.
A.2. For all x, y, and w in $\mathbb{R},(x+y)+w=x+(y+w)$.
A.3. There is a real number z, such that for all real $x, x+z=x$.

Note: We will show that there is only one such z. It is called "zero" and denoted 0 .
A.4. For each real number x, there is a real number i, such that $x+i=0$.

Note: For each real x, there is only one such object i. It is called the "additive inverse of x " and is denoted by $-x$.

About Multiplication

M.1. For all x and y in $\mathbb{R}, x \times y=y \times x$.
M.2. For all x, y, and w in $\mathbb{R},(x \times y) \times w=x \times(y \times w)$.
M.3. There is a real number u, such that $u \neq 0$ and for all real $x, x \times u=x$.

Note: There is exactly one such u. It is called "one" and is denoted by 1 .
M.4. For each x in $\mathbb{R}-\{0\}$, there is a real number r such that $x \times r=1$.

Note: For each non-zero x, there is exactly one such r.
It is called the "multiplicative inverse of x " and is denoted by $1 / x$.

Connecting Addition and Multiplication

D.1. For all a, b, and c in $\mathbb{R},(a+b) \times c=(a \times c)+(b \times c)$.

About the set \mathbb{P}.

These axioms allow us to define the usual order on \mathbb{R} and to deduce the algebraic properties of order which are crucial to analysis.
O.1. For all x and y in $\mathbb{P}, x+y \in \mathbb{P}$ and $x \times y \in \mathbb{P}$.
O.2. For each real x, exactly one of the following three statements is true:

$$
x \in \mathbb{P} \quad x=0 \quad-x \in \mathbb{P}
$$

Any system $\langle\mathbb{F},+, \times\rangle$ satisfying the properties \mathbf{A}, \mathbf{M}, and \mathbf{D} is a field. If the system also has a distinguished set of positive elements \mathbb{P} which satisfies \mathbf{O}, then the system is an ordered field. The real number system has one more distinctive property, completeness. It takes several definitions to build up to the concept of completeness.

Definitions:

1. Subtraction is a binary operation on \mathbb{R}, defined for all real x and y by

$$
x-y=x+(-y) .
$$

2. Division is defined on all pairs (x, y) of reals with $y \neq 0$ by

$$
x \div y=x / y=\frac{x}{y}=x \times(1 / y) .
$$

3. We define four order relations on \mathbb{R} as follows. For all x and y in \mathbb{R},

$$
\begin{array}{cc}
x<y \Longleftrightarrow\{y+(-x) \in \mathbb{P}\} & x>y \Longleftrightarrow y<x \Longleftrightarrow\{x+(-y) \in \mathbb{P}\} \\
x \leq y \Longleftrightarrow\{[x<y] \text { or }[x=y]\} & x \geq y \Longleftrightarrow y \leq x \Longleftrightarrow\{[x>y] \text { or }[x=y]\} .
\end{array}
$$

Note that with these definitions, $\mathbb{P}=\{x: 0<x\}=\{x: x>0\}$.
4. Suppose that $S \subseteq \mathbb{R}$ and that u and ℓ are real numbers. We introduce the following definitions and notations:
u is an upper bound for S iff for all s in $S, s \leq u$.
ℓ is a lower bound for S iff for all s in $S, \ell \leq s$.

$$
\begin{aligned}
\mathcal{U B}(S) & =\{u: u \text { is an upper bound for } S .\} \\
\mathcal{L B}(S) & =\{\ell: \ell \text { is a lower bound for } S .\}
\end{aligned}
$$

S is bounded above iff $\quad \mathcal{U B}(S) \neq \phi$
S is bounded below iff $\quad \mathcal{L B}(S) \neq \phi$.
5. Suppose that $S \subseteq \mathbb{R}$ and $m \in \mathbb{R}$. We say that
m is a smallest element in S iff $m \in S$ and, for all s in $S, m \leq s$
and
m is a largest element in S iff $m \in S$ and for all s in $S, m \geq s$.
Notes:
(1) We will see that if S has a smallest element, then that element is unique.
(2) In such a case we denote that smallest element by $\min (S)$ for minimum of S.
(3) Similarly we will see that if S has a largest element, that element is unique and
(4) we will denoted this largest element by $\max (S)$ for maximum of S.

The completeness axiom

C1. For every subset S of \mathbb{R}, if S is not empty and $\mathcal{U B}(S)$ is not empty, then $\mathcal{U B}(S)$ contains a smallest element.
Such a smallest element of a set of upper bounds for a set S, is called a least upper bound or a supremum for S. We will see that if a set has a least upper bound, then that least upper bound is unique and we will denote it by $\operatorname{lub}(S)$ or $\sup (S)$.

An ordered field $\langle\mathbb{F},+, \times, \mathbb{P}\rangle$ satisfying the completeness axiom is called a complete ordered field. The real numbers form a complete ordered field. The rational numbers are an ordered field under the usual ordering, but - as we will see - do not satisfy the completeness axiom.

