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Introduction.

The present paper falls within the framework of the theory of critical points at infinity, initiated in 1978 in the
field of Contact Form Geometry and which we developed, together with my collaborator J.M.Coron, over the years
1984-1986 on Yamabe-type equations and on scalar curvature problems, [1], [2], [3], [4], [5] and more.

The ideas which are presented here can be easily connected to our joint paper with J.M.Coron [4], despite the
improved interpretations and the increase in power in the tools.

This paper therefore may be seen as an application of the ideas of [4] to Yamabe Changing-Sign equations.
The main result involves an understanding of the Morse relations at infinity for Yamabe changing-sign problems,

on S3 or on a domain Ω of R3. We study in particular (Part III) whether the relation ∂∞ ◦ ∂∞ = 0 holds. ∂∞ is the
intersection operator at infinity for the Yamabe changing sign-problem.

This study relies on a Morse lemma at infinity established in [6], under some conditions which are to be removed
for the general theory to proceed. This expansion (Part II) should be useful in other problems such as Yang-Mills
equations in dimension 4, the harmonic map problem in dimension 2 etc.

After recalling in details the expansion at infinity of [6] and after studying of the Morse relation ∂∞ ◦ ∂∞ = 0,
we also extend in the present paper the so-called ”Bahri-Coron” topological argument to the framework of Yamabe
changing-sign problems. We find conditions for this extension which might appear at first glance to be stringent.
But they can be weakened; they might also be verified for some subset of critical points at infinity in this variational
problem. This is Part IV of this paper.

The hope that these results will be helpful for the finding of infinitely many solutions to the equation ∆u+u5 = 0
in Ω, u|∂Ω = 0, where Ω a non-contractible bounded and regular domain of R3.

On a personal note and as a conclusion to this brief introduction, we hope that Jean-Michel will see in the present
paper, written for his sixtieth birthday, the expression of our gratitude for a creative collaboration!

Part I: The relation ∂ ◦ ∂ = 0 in a given variational problem.

We consider in the sequel a variational problem and its intersection operator ∂. The relationship ∂◦∂ = 0 holds for
this variational problem once a Morse-Smale pseudo-gradient is defined. We assume that the Palais-Smale condition
and all transversality conditions are verified for this variational problem, which is equipped with the pseudo-gradient
we are referring to. If required, we can extend the Morse Theory with the addition of the appropriate critical points
at infinity so that the Palais-Samle condition, also appropriately extended to include the critical points at infinity,
holds.

There is a nearly geometric representation of the relation ∂ ◦ ∂ = 0: taking a dominating critical point xk+2, of
index (k + 2), and a dominated critical point at infinity xk, of index k, we assume, for simplicity, that the Morse
relations of order m, that is the Morse relations involving a critical point of index m xm with a critical point of index
(m − 1) xm−1, are all of algebraic numbers equal either to 1 or to −1 or to 0 and we assume that this algebraic
number corresponds to the actual number of flow-lines (with a sign assigned to them according to orientation) from
xm to xm−1.

Then the relation ∂ ◦ ∂ = 0, between xk+2 and xk, may be viewed as represented by kites:
1
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The algebraic intersection number of each branch of the kite above zl − zl−1, zl = xm, xm−1 or ym−1, zl−1 =
xm−1, ym−1 or xm−2 is ±1. The products of the signs attributed to the two branches on each side of a kite are
opposite in sign.

There can be several kites involving two critical points xk+2 and xk; but all critical points dominated by xk+2

and dominating xk are involved in exactly one kite.
When the intersection numbers are not 0, 1 or −1 or when there is multiplicity of flow-lines, we can break the

multiplicity after perturbation of the variational problem. We can also complete cancellations of flow-lines of opposite
intersection numbers and the result holds again.

This provides a nice and simple geometric representation for the relation ∂ ◦ ∂ = 0.

Part II: The Yamabe sign-changing Variational Problem, expansion on S3.

The variational problem corresponding to the Yamabe Changing-Sign equations has been studied in [6]. An
expansion at infinity, under some additional assumptions for which we refer to [6], has been derived. The ωis below
are the variational solutions of the Yamabe changing-sign problem on R3, the ais are their concentration points, the
λis their concentrations. These data may be viewed indifferently on S3 or on R3, see [6] for more details on these
definitions etc.

Functions u that are in a neighborhood of infinity read:

u = Σαiωi + v

where v is small in the ”H1”-norm and satisfies various orthogonality conditions, see below.
The functional

J(u) =
(
∫ |∇u|2dx)3∫

u6dx

then expands into:
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J(
p

Σ
i=1

αiωi + v) =
((

p

Σ
i=1

α̃i

∫ |∇ω̄i|2dx)

(
p

Σ
i=1

α̃6
i

∫
ω̄6

i dx)
× [1− c̄ Σ

i 6=j
ω̄i( ˜̄aj)ω̄∞j ε̃ij − Σ

i 6=j
cij(ω̄i, ω̄j)ε̃3ij + Q(v, v)]

The expansion, just as a usual Morse Lemma does, see eg [6], involves an invertible change of variables. Over this
change of variables, the variables (αi, ai, λi, v) associated to the representation of u are changed into (α̃i, ãi, λ̃i, V ). ω̄i

is a rescaled version of ωi, with concentration λ = 1 for example and ai is at the North pole of S3. The concentration
points ai are changed into ˜̄ai, the concentrations λis are changed into λ̃is and the εijs, with

εij =
1

( λi

λj
+ λj

λi
+ λiλj |ai − aj |2)1/2

are changed into their corresponding values with the new variables. ω̄∞j is the value of ω̄j at the south pole of
S3. cij(ω̄i, ω̄j) is a positive constant depending on the rescaled versions of ωi, ωj , that is depending on ω̄i and ω̄j .
Implicit in the definition of these is a parameter of relative rotation σ in O(3) that tracks the relative position of
∇ωi with respect to ∇ωj at the south or north pole of S3.

The Morse Lemma is established in [6] under various ”reasonable” assumptions, see [6]. We have conjectured in
[6] that it holds in full generality and we assume in this paper that it does.

The proof of [6] uses several constructions of local pseudo-gradients for the functional. These constructions are
assumed to be known in this paper; we refer the reader to [6] for them.

Extension to domains of R3 of this expansion can be ”guessed”, with the use of the regular part of the Green’s
function on these domains for the Dirichlet problem, as in [4], [5]. This ”guess” should be transformed, of course,
into a rigorous proof. The observations below assume that this transformation has been completed: we will use the
”natural” expansion of the Yamabe changing-sign problem that we can ”guess” from the expansion above.

The third part of this paper is devoted to:

Part III: A Few Observations about the Topology at infinity using the above expansion.

The above expansion shows that the variational problem at infinity can be split into two largely independent
other variational problems. One of these problems involves only the re-scaled ”masses” ω̄is and the ”weights” αis
in front of them. The other problem involves, if we assume that the concentration points are not close pairwise or
if we introduce weaker assumptions, see [6], in particular we assume that εij ∼ 1√

λiλj |ai−aj |
, and we make further

assumptions on the points ais, the concentrations λis and on the ω̄is, via ω̄∞i and 5ω̄∞i . This second variational
problem reads essentially:

1 + c̄
(
−−− ω̄∞i√

λi
−−−

)




0 −1
|a1−a2| − −1

|a1−aj | −
−1

|a2−a1| 0 − −1
|a2−aj | −

− −1
|ai−aj | − 0 −1

|aj−ai| −
− − − − −
−1

|ap−aj | − − − 0







−
−̄

ω∞j√
λj

−
−




The additional terms, which read − Σ
i 6=j

cij(ω̄i, ω̄j)ε̃3ij , may be viewed as lower order terms that can be removed

under the same assumptions. Q(V, V ) is an additional term having V = 0 as sole critical point (|V |H1 is small). Q is

a quadratic form that has an index equal to
p

Σ
i=1

(index(ω̄i − 1), where index(ω̄i) is the strict Morse index of ω̄i. The

matrix involved in the above expansion is denoted A in the sequel.
Let us start by observing that the index of any sign-changing solution to the Yamabe problem on R3 is 2 to the

least. The first variational problem described above involves the ω̄is and the αis.
Through the αis, ”masses” ω̄is may be lost ie some αi e.g α1 becomes equal to zero along some decreasing flow-line

and ω̄i ”disappears”.
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Since the total variational problem is the product of two independent variational problems, a pseudo-gradient
can be built that is split into two independent components near infinity. Therefore, any flow-line along which one
coefficient αi, in front of some sign-changing ω̄i, becomes zero (there may be more and, then, the requirement that
they would be attached to a sign-changing ω̄i drops), will involve a difference of indexes larger than or equal to 2.

Driving the Morse relation at infinity.

Let us consider a Morse relation at infinity with a difference of Morse indexes equal to 1.
Either the Morse relation involves a non trivial flow-line for the first variational problem; or it involves a non

trivial flow-line for the second variational problem. If the flow-line is non trivial for both, then the difference of
Morse indexes is at least 2 as we will see.

If the ” masses” ω̄i stay unchanged, but the points āi change (flow-line for the second variational problem only),
then the critical level at infinity is basically unchanged. The change occurs through the function ρ as in [2], appro-
priately extended (it is an eigenvalue of the matrix A; the signs of the components of the corresponding eigenvector
should coincide with the signs at infinity of the ω̄i(āi). We are assuming generic conditions as in [6]). This Morse
relation at infinity is then part of a (partial) Morse complex that is a retract for the Morse relations of the full
variational problem.

We therefore study here on a Morse relation where ω̄1 for example is changed into another ”mass” ω0 or into
(Σω′j)∞. In the next sub-section, we will see that Morse relations where the loss of index is precisely 1 involve precisely
such and other transformations of the same type for one of the ”masses” ωj under some additional conditions on
the Morse index of these ”masses”. We study here how to ”drive” them so that such a transformation will lead us
from a genuine critical point at infinity to another genuine critical point at infinity and not a false one. The study of
the operator ∂∞, the intersection operator at infinity, is made easier in this way. As a preliminary step, we discuss
the action of the conformal group:

.The action of the Conformal Group:

Due to the action of the conformal group, ω1 induces a manifold of critical points. ω1 cannot be the standard
bubble, otherwise ω̄0 does not exist. We may then assume that this manifold is not the ball B4.

Assume for simplicity that ω̄1 has no symmetry. Then this manifold may be viewed as the union of two disjoint
copies (two for ±ω̄1) of S3 × [1,∞).

We break the symmetry and ”compactify” (for the concentration component). ω1 will then induce another critical
point ω̂1 of index (s + 3) if ω1 is of (strict) index s. We denote ω̃1 the related ”minimum” point in the manifold,
which is of index s.

Assume that ω̄0 is not the standard bubble also. We indicate below how to adjust the arguments for this later
occurrence. We then break also the symmetry for ω̄0 and we find then two critical points, ω̂0 of index (s + 2) and ω̃0

of index (s− 1).
We choose ω̃1 and ω̃0 (the minima) so that their values at the North pole of S3 (or at infinity in R3)are non-zero

and are of the same sign . We choose ω̂1 and ω̂0 also so that their values at the North pole of S3 (or at infinity in
R3)are non-zero and are of the same sign. This will be useful in the sequel.

The Morse relations with difference of indexes equal to 1 then relate ω̂1 to ω̂0 and ω̃1 to ω̃0.

.More masses:

When there are more ”masses” and the Morse relation is therefore more complicated, the flow-line needs not
connect ω̃1 to ω̃0 and ω̂1 and ω̂0: this is a new flow-line, which is independent of the flow-line connecting ω̃1 to ω̃0

and ω̂1 to ω̂0 as it involves more ”masses”. The conformal group then acts on the group of p masses, not on the
single mass defined by ω1.

We present now two arguments in order to warrant that a flow-line undergoing such a transformation in the masses
that it carries will connect a true critical point at infinity to another true critical point at infinity.

The first one runs as follows: after breaking the symmetry, ω̂1 can be thought to be a bit above ω̃1. The same
result holds for ω̂0 and ω̃0.
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We turn now to our critical point at infinity. The first ”mass” of this critical point at infinity uses ω1. It therefore
can be assumed to be ω̃1 or ω̂1.

We also consider the critical point at infinity that it dominates. The first ”mass” of this critical point at infinity
uses ω0. It therefore can be assumed to be ω̃0 or ω̂0. Since we are assuming that the difference of Morse indexes is
1, ω̃1 will yield ω̃0 and ω̂1 will yield ω̂0.

These two couples of ”masses” have the same sign at infinity (they are non-zero at infinity) and therefore, after
rescaling the concentrations, we may assume that the vectors:




ω̄∞1√
λ1
.
.
.

ω̄∞p√
λp




=




ω̄∞0√̃
λ1

ω̄∞2√
λ2
.
.

ω̄∞p√
λp




are the same.(λ1 is changed into λ̃1, ω̄∞2 , ..., ω̄∞p are unchanged; ω̄∞1 can take two values depending on whether we
are considering ω̃1 or ω̂1; the same holds for ω̃0 and ω̂0).

The concentration points (a1, ...., ap) are unchanged. Therefore, the two configurations are of the same nature:
either they are both true critical points at infinity; or they are both false critical points at infinity. This is a
remarkable fact.

We will discuss below the Morse relations that contain a flow-line between an ω1 and a critical point at infinity
(Σω′j)

∞, that is configurations as above, but where ω0 is replaced by a critical point at infinity.
For the case when ω0 = ±δ0, there is the need for a more specific argument since the manifold corresponding to

±δ0 is a ball (or two balls B4). However, this ball appears only if there are flow-lines from ω1 to a constant. We
may assume that such a flow-line does not take place in a more complex Morse relation, when ω1 has other ”masses”
with it p ≤ 2, because we can assume that, when de-concentration takes place for one ”mass”, it takes place for all
the ”masses” on the flow-line that we are considering, connecting these two critical points at infinity with difference
of Morse indexes equal to 1. Therefore, the Morse relation embedded in the more complex one, between ω1 and ±δ0,
will fall under the arguments developed above, when the manifold was made of two copies of S3 × [A,∞), A large.

Let us now present a second, more specific argument in order to analyze the Morse relations ω̃1 − ω̃0, ω̂1 − ω̂0

when they are embedded in more complex relations.
As already pointed out above, when there are more ”masses”, the flow-line needs not to connect ω̃1 to ω̃0, ω̂1 to

ω̂0: the conformal group acts on the group of p masses, not on the single mass defined by ω1. The flow-line is
originating at a critical point at infinity which is specific and contains more masses than ω1. We are not bound by
our construction for the single ω1 or by the construction of the flow for another, different critical point at infinity. We
can ”adjust” our flow depending on the critical point at infinity that we are studying and depending on the masses
that it carries. This allows us to modify the flow so that the flow-line will connect ω1 and Ψ∗λ1,σω0 where Ψ∗λ1,σ

designates the action of the conformal group, with rotation σ (around a single axis) and concentration λ1. Ψ∗λ1,σω0

is another element in the manifold of critical points corresponding to ω̄0 that can be different from ω0.
Two occurrences may arise, see [6] for more details: Let us first assume that none of the p ”masses” ω̄i is

concentrated at a point ãi such that ω̄i(ãi) is zero eg ω̄1 is concentrated around a point ã1 where eg ω̄1 is positive.
In order to describe the various critical points at infinity, we can-it is in some regards a repeat of the previous

argument; but we are more specific-”break” the nodal zones where ω̄1 is positive, creating maxima for a perturbation
of a functional J when ã1 assumes some specific positions. We then restrict ourselves to one of these critical points
at infinity and we complete the following construction, critical point at infinity by critical point at infinity in this
family, ”driving” ω̄1 when it is concentrated around these points ãj , j = 1, ..., t, to an appropriate value of ω0, ωj

0.
We choose for ω0 a point bj such that ω̄0(bj) has the same sign than ω̄1(ã1) and we proceed. ω2, ..., ωp are kept

unchanged in this Morse relation. We re-scale the concentration on the first mass so that the concentration vector
cited above is unchanged at the beginning and at the end of the flow-line.
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We have therefore ”driven” the basic Morse relation ω̄1 − ω̄0 into a more complicated Morse relation when ω̄1 is
involved in a more complex critical point at infinity (ω1, ..., ωp).

We have built the flow-lines out of (ω1, .., ωp) so that a flow-line (ω1, .., ωp−)− (ω0, ω2.., ωp) corresponds to each
ω̄1 − ω̄0 (split into ω̃1 − ω̃0 and ω̂1 − ω̂0. We can complete the same construction for each index i in {1, ..., p}. This
takes care of the Morse relations when ω0 is a single mass (the mass δ0 = ω0 is resolved as above), if ω̄(ã1) is non-zero.

If ω̄1(ã1) is zero, then , following the Morse Lemma at infinity of [6], we may assume that all ω̄j(ãj)’s are zero
(otherwise, a decreasing deformation can be defined, see [6]; it moves the points ãj such that ω̄j(ãj) is zero and very
close to zero, with respect to the points ãk such that ωk(ãk) is ”far being zero”.

We then ”drive” the Morse relation so that ω1, concentrated around a zero (along its sets of zeros) is driven to
ω̄0 also concentrated around one of its zeros. we keep the relative positions and orientations of the tangent planes to
ω̄1 = 0 at ã1 and to ω0 at the image point b̃1 to be the same so that the coefficients c1j(ω̄1, ωj) in front of εij3, which
depend on the dot product ∇ω̄∞1 .∇ω̄∞j is unchanged when ω̄1 is replaced by ω̄0. The other cijs are unchanged. The
concentration λ1 is scaled into λ̃1 so that the second factor in the expansion is unchanged.

The relation ∂∞ ◦ ∂∞ = 0 for the Yamabe changing-sign variational problem on bounded domains of R3.

Given a bounded domain Ω of R3, we consider the problem ∆u + u5 = 0 in Ω, u|∂Ω = 0. We assume in the sequel
that this variational problem has only a finite number of solutions and we want to explore whether the relation
∂∞ ◦ ∂∞ = 0 holds. ∂∞ is the intersection operator between critical points at infinity, at infinity; that is we only
count for ∂∞ the flow-lines staying at infinity. The other flow-lines are denoted in what follows ”de-concentration
flow-lines”.

In the sequel, we make seven observations about the behavior of this operator and we conclude with a Conjec-
ture/Theorem about the relation ∂∞ ◦ ∂∞ = 0.

We thus consider a critical point at infinity
p

Σ
i=1

ωi,ai,λi , λi tending to ∞.ωi rescaled is ω̄i, ai might move in the

definition of the critical point at infinity along subsets of Ω, according to the unstable manifolds of the critical points
of the function ρ defined in Part I.

1. The first observation is the following: Assume that none of the ωis is a δi. Then, along ∂∞, no mass ωi can be
lost, they are only transformed: ωi into an ω′i. This conclusion follows from Part II and its expansion. If a mass ωi,
which is not δi is lost, then the loss of index is more than 1 and ∂∞ allows for a loss of index equal to 1 only. This is
clear when the points (a1,−−−, ap) are ”frozen” in the definition of our dominating critical point at infinity. When
they are not ”frozen”, that is when we are considering a critical point (ā1, ...., āp) for the function ρ(x1, ..., xp) with
positive Morse index, then we may view our Morse relation as a combination of a loss of one or several masses ωi with
the projection of the unstable manifold of (ā1, ...., āp) for ρ(x1, ..., xp) on the remaining dimensions corresponding to
the remaining points. The sum of these dimensions cannot exceed the initial dimension of the unstable manifold of
(ā1, ...., āp); therefore, any critical point at infinity further encountered along a decreasing deformation must, by the
index count of Part III below, be less than the index of the dominating critical point at infinity we started from by
at least 2. The claim follows.

2. The second observation is that, if two masses ωis transform, then again, reasoning as above, the loss of index
is al least 2 so that the change is not along ∂∞ again.

3.We thus concentrate on the case when exactly one ωi is changing from ω to ω′. We consider the variational
problem on S3, with the single mass ω̄, fully de-concentrated. It dominates ω̄′ with a difference of Morse indexes
equal to 1.

Assume now that, starting from the new critical point at infinity we have reached along ∂∞, we have a new
flow-line along ∂∞ and that, along this flow-line, ω′ itself changes into ω” along ∂∞. Then, ω̄′ gives rise into ω̄”,
with a difference of Morse indexes equal to 1.

We consider the Morse relation ω̄ − ω̄′ − ω̄”. It is one branch of a kite for the changing-sign variational problem
on S3, this follows from Part I. There is another branch for the other side of this kite. If it is a branch of the type
ω̄− ω̄′1− ω̄”, we may re-concentrate the full kite (points are frozen here, since we have changes in the masses), getting
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thereby a kite for ∂∞, with a partial verification of the relation ∂∞ ◦ ∂∞ = 0. We need of course to adjust the
flow-line between ω, ω′1 and ω” as above, so that the insertion of ω′1 in the remainder of the dominating critical point
at infinity, after removing ω, is still a genuine critical point at infinity, see above(”driving the Morse relation) for the
details of this process, completed in a specific way for each critical point at infinity.

If ω̄′1 is a critical point at infinity ω′1,∞, we need to concentrate it around a point where the sign of ω at ai and
the sign of ω′1,∞ coincide. This can be done as soon as ω′1,∞ is not made of critical points at infinity which all δis
or −δis. Since ω′1,∞ is inserted in a critical point at infinity which dominates, along ∂∞, that is at infinity, a critical
point at infinity where ω”i replaces ω′1,∞ and this is the only change, ω”i(ai) must have the sign of ω(ai)- otherwise
there is an additional variation along ρ and the loss of index is more than 1- we find that ω′1,∞ can be concentrated
around a point where the sign of ω′1,∞ coincides with the sign of ωi(ai). Again, a kite is re-formed and the relation
∂∞ ◦ ∂∞ = 0 is verified at the dominating critical point at infinity.

The case when ωi(ai) is zero can be ruled out using the fact that (ā1, ..., āp) is a critical point of ρ. Assumptions
of generic behavior have to be introduced here, in line with what we have done so far for Yamabe changing-sign
problems, see [6].

4. We could also face a configuration when ωi changes into ω′i and, then, at the next level, another ωi changes
into another ω′i. Again, a kite arises after switching along the branches the order for these changes.

5. We could, instead of having a change along ωi, have a change of the concentration points along ρ. If we have
two such changes along ρ, the dominated critical point at infinity has points of concentration (b̄1, ..., b̄p) which form
a critical point for ρ. We then find a kite along ρ.

6. We can also find a kite with a mixed branch between ρ and ωi changing into ω′i. the same conclusion holds
after careful adjustment of the points of concentration.

7. When ωi is δa, we can lose δa; but if the change is along ∂∞, the point a must be ”frozen”. The analysis can be
extended. If δa is not lost and we have a change along ρ where the point a moves, then a must live along a manifold
of dimension 1. This can be embedded into flow-lines for ∂∞. After taking ∂∞ along ρ, more specifically along the
interval where the point a is constrained to live (if it lives on an interval; it could live on a circle), a is ”frozen” at
the next step for ∂∞ and the action of ∂∞ could correspond to a loss of δa. We can again seek for the other branch
of the kite and it might exist at infinity; but it could also lead us outside the critical points at infinity, since the
other boundary of the interval where a lives could yield a negative value for ρ, thereby leading the flow-lines outside
of infinity.

As a conclusion, we get the following:

Conjecture /Theorem. If no δa, with a constrained to live on a one dimensional interval, is in the definition of
a critical point at infinity, then the relation ∂∞ ◦ ∂∞ = 0 holds at this critical point at infinity.

The loss of one ”mass” δ∞ as well as the conditions that should be met for a genuine critical point at infinity is
analyzed in more details in what follows:

We now analyze more specifically:

The more special case of the Morse Relations of order 1 (δ∞ + ω∞) − ω∞ and (ω1, ..., ωp)∞ − ((Σω′j)
∞, ω2,− −

−, ωp)∞.

Let us observe that our previous discussion extends to the case when ω0 = (Σω′j)
∞ since we may view (Σω′j)

∞ as
a critical point at infinity formed with a compact ω̄′1 to which very ”concentrated other masses” ω′j , j ≥ 2 are added.

Of course, it is unclear whether we can think of (Σω′j)
∞ as a concentrated version of ω̄′1 + (Σω′j)

∞ around a
point ã′1 where ω̄′1(ã

′
1) is non-zero and has the ”right sign” as above. But again, we can ”drive” the Morse relation

ω1 − (Σω′j)
∞ to be of that sort when there are more masses and the conclusion follows in this case.

We thus now consider a Morse relation δ∞ + ω∞ − ω∞; we study the second factor in the expansion of the
functional, after the loss of δ∞ and we look at the second variational problem, with variables (a1, .., ap, λ1, ..., λp).
a1 is gone, as well as λ1.
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The equation satisfied by (a1, ..., ap, λ1, ..., λp) reads, up to higher order terms, see [6] and our expansion above:

∇(a1,...,ap,λ1,...,λp)

(
ω̄∞1√

λ1
. .

ω̄∞p√
λp

)
A




ω̄∞1√
λ1
.
.
.

ω̄∞p√
λp




= 0

subject to the constraint
p

Σ
i=1

λi = ε (λi  0; ε is given positive).

A is, as stated above, the matrix




0 . . . . −1
|a1−ap|

. 0 −1
|a2−aj | . . .

. . 0 . −1
|ai−aj | .

. . . 0 . .

. . −1
|ai−aj | . 0 .

. . . . . 0




. When a λi is infinite (this may occur), this

equation is modified. We assume here that all λi s are finite.
Introducing

f(a1, ..., ap, λ1, ..., λp) = 1−t uAu

with u =




ω̄∞1√
λ1
.
.
.

ω̄∞p√
λp




,
p

Σ
i=1

1
λi

= ε, λi  0, λi can assume the value ∞, we find, after extending the variational theory and

allowing some of the λis to be infinite if needed, critical points having a a definite, finite Morse index.
With (a1, λ1) removed and the other points unchanged, we find a new function (similar to the previous one) with

the other critical points.
There is already, with the loss of δ∞, an index difference equal to 1. With these new critical points, we should

not have any additional loss of index.
A similar phenomenon arises on domains Ω ⊂ R3, under Dirichlet boundary conditions, for relations of the type

δ∞ + ω∞−ω∞. Clearly, if each of a1, ..., ap sits, just as in [4] for example, on the top orientation class of a manifold
or stratified space M ⊂ Ω, M of dimension 3, 2 or 1, the loss of a1 will result in the loss of an additional index and
this Morse relation will involve a difference of Morse indexes equal to 2 to the least.

A similar study should be completed for λ1. We do not complete this analysis here.

There are additional conditions to be met for δ∞+ω∞ to be a genuine critical point at infinity. With u =




ω̄∞1√
λ1
.
.
.

ω̄∞p√
λp




,

ω̄1 = 1, we should have:

tuAu ≥ o(Σ
1
λi

)

Also (ω̄1 = 1),

−(
∞
Σ

j=2

ω̄∞j√
λj |aj − a1|

) ≥ o(Σ
1
λi

)
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.
We thus see that, on R3,

( Σ
j 6=k

ω̄∞j ω̄∞k√
λjλk|aj − ak|

) ≤ o(Σ
1
λi

)

at a critical point at infinity.

It follows that, if (
∞
Σ

j=2

ω̄∞j√
λj |aj−a1|

) ≥ c(Σ 1
λi

), c  0, then ω∞ is not a critical point at infinity since:

1 +
(

ω̄∞2√
λ1

. .
ω̄∞p√

λp

)




0 . . . . −1
|a1−ap|

. 0 −1
|a2−aj | . . .

. . 0 . −1
|ai−aj | .

. . . 0 . .

. . −1
|ai−aj | . 0 .

. . . . . 0







ω̄∞2√
λ1
.
.
.

ω̄∞p√
λp



≤ 1− c

2
Σ

1
λi

Again, under such a circumstance, there is no Morse relation of the type δ∞+ω∞−ω∞ with a difference of Morse
indexes equal to 1. We had already seen that there was none when another type of ”mass” is lost.

The conclusion of all this study is that, for several types of critical points at infinity, corresponding to special
topological classes, or when the domain is S3 or R3, there is no Morse relation entirely at infinity over the loss of
”one or more masses” with a difference of Morse indexes equal to 1.

Such Morse relations may occur even for these classes, but they involve a ”de-concentration phenomenon”, see
[2], [4], [5] and this holds as we deform eg the domains Ω under Dirichlet boundary conditions.

On the other hand, without the ”loss of masses”, such Morse relations, with a difference of Morse indexes equal
to 1, occur at infinity. But, they can be thought of then as simple products of a simple Morse relation, with a single
mass ω1 as dominant term and a loss of index equal to 1, with additional masses (ω2, ..., ωp)∞ that stay unchanged
over the Morse relation.

The analysis above can be extended, with appropriate modifications, to the case when the concentrations are of
various orders as they tend to infinity.

Two natural questions and a conjecture.

As a consequence of the study completed above, two natural questions then arise, as well as a conjecture that
helps the study of critical points at infinity on domains:

1.First Question: What is the homology H(∂∞), whenever it is defined? Is it then a retract of the homol-
ogy of the full intersection operator ∂ for the ”full” variational problem on Ω? Due to the possible existence of
”de-concentration”-flow-lines for the intersection operator ∂, starting at a critical point at infinity and leaving a
neighborhood of ”infinity”, this question cannot be answered easily, even though the relation ∂∞ ◦ ∂∞ = 0 holds
for many critical points at infinity as described above. Nevertheless, some additional (stringent) conditions may be
introduced on the critical values of the variational problem at infinity on S3 and the corresponding Morse indexes of
their associated critical points at infinity so that this de-concentration process does not happen for this other branch
of the kite. Whether these conditions are verified or not verified for some configurations of critical points at infinity
on S3 is an open matter which will be discussed elsewhere.

Before stating the next question, we would like to sate a conjecture related to the solutions of the problem in Ω
and to the critical points at infinity they give rise to. This conjecture reads as follows:

Conjecture. Let ω be a changing sign solution to the Yamabe changing sign problem on Ω 6= S3. Then, (ω +
p

Σ
1
ωi,ai,λi

), ai ∈ Ω, λitending to ∞, aid(ai, ∂Ω)tending to ∞, is not a critical point at infinity if p is large enough.

Why is this conjecture probably true?: If ωj,aj ,λj has, after appropriate re-scaling, a sign at aj which is the sign
of ω(aj), then ω and ωj,aj ,λj

have a negative ”interaction” and the functional can be decreased by decreasing λj .
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Otherwise, assuming that these ωj,aj ,λj are in large numbers, a large number of them is located in a nodal zone
for ω where ω is eg positive and all the ωj,aj ,λj s concentrated in this nodal zone are negative at their concentration
points. We can then decrease the functional J and move eg one of the points of concentration outside this nodal
zone, into another nodal zone where the signs are opposite. A decreasing deformation, which is compact, can then
be used as above.

Another natural question which arises has been known to us since we wrote [2]. It bears some similarities, within
quite different frameworks, to the questions studied by E.Sandier and S.Serfaty for the Guinzburg-Landau equation.
For this equation, these two authors have completed a very good work, see eg [9] for an exhaustive account of these
results. It would be meaningful to extend some of their results to our present framework. The question reads as
follows:

2. Second Question: ”Piling up” masses
p

Σ
1
εiδai,λi

, εi = ±, in various p points of Ω, eg Ω even a standard annulus,

with a varying ratio Rext

Rint
and assuming that the configuration of points verifies ρ(a1, .., ap  0,∇ρ = 0, where do

these masses concentrate as p tends to infinity? How is the relative positions on the positive and negative masses?
(they both should be ”spread”). Is it possible that there exists a p0 such that, for p ≥ p0, there are no such critical
configurations of points and masses?

In the next sub-section, we study this second question on S3:

Configurations of points on S3.

. The second variational problem:
Following our resolution of each manifold of critical points into a top and a bottom critical point that take non-zero

values at the poles, the first variational problem leads us to configurations of critical points at infinity such that the
relative products of their values ”at infinity” ω̄∞1 × ω̄∞2 is non-zero.

Then a critical point at infinity, once the infinitely concentrated masses are removed, corresponds for the second
variational problem to a critical point of an eigenvalue ρt of the matrix A(a1, ..., al)

A(a1, ..., al) =




0 . . . . −1
|a1−al|

. 0 −1
|a2−aj | . . .

. . 0 . −1
|ai−aj | .

. . . 0 . .

. . −1
|ai−aj | . 0 .

. . . . . 0




associated to the remaining points a1, ..., al. al+1, ..., ap are additional points corresponding to masses ±δi infinitely
concentrated.

The concentration vector is u =




ω̄∞1√
λ1
.
.
.

ω̄∞l√
λl




At a critical point at infinity, the following equations are satisfied:

Au = ρtu, u 6= 0; ρt ≥ 0

∇(a1,...,a`)ρt = 0

This formula is denoted (∗) in the sequel. In addition, we have (a condition that generalizes to the case when S3

or R3 are replaced with a domain Ω:
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ω̄∞i (
`

Σ
j=1

ω̄∞j√
λj |ai − aj |

) ≤ 0; i = ` + 1, ..., p

This formula is denoted (∗∗) in the sequel.
(∗∗) expresses the fact that the derivative of the expansion with respect to the concentration λi, i = ` + 1, ..., p is

negative. (∗) rereads:

Au = ρtu,t u(∇A)u = 0

If we use the homogeneity of R3 or a conformal vector-field on S3 having a zero at one of the concentration points,
we find that ρt = 0. Viewed in R3, this deformation moves the concentration points away from 0, it might no be a
compact deformation. Viewed on S3, it is a deformation along a conformal vector-field. Using an appropriate chart,
the points ai will move along a compact set. We thus find:

(∗)′Au = 0,t u(∇A)u = 0

We can create solutions for (∗)′ by placing equidistant masses along a meridian of S3. This can be connected to
[8].

We can also relate this equation to our earlier work [2] and we can connect it, as stated above, with the work of
E.Sandier-S.Serfaty [9].

Observe that the index of a critical point at infinity defined by the masses (ω1, ..., ωp), some under the form ω̃j

(group I), the other ones under the form ω̂j (group II), concentrated at (a1, .., ap), with comparable concentrations,
reads as:

p

Σ
j=1

indexω̄j + 3cardinal of II + index ρt

The term 3cardinal of II can be more generally replaced by the sum of the dimensions of the stratified sub-
sets/submanifolds of Ω or S3 to which the concentrations points ai of the ”masses” of the group II belong in the
definition of the critical point at infinity. Some critical points or critical points at infinity on S3 contain such an
additional variation of the concentration points ai, see eg the construction of some solutions on S3 due to M.Del
Pino, M.Musso, F.Pacard and A.Pistoia[8]. It can also happen on domains Ω of R3.

.Conjectures

Following up on this line of ideas, we conjecture that, outside of these special configurations along meridians, the
other solutions of (∗)′ should ”spread” as the number of ”masses” increases to infinity on S3 with equal density. This
should be especially true in the case of configurations of ”standard bubbles ±δi. Simple arguments show that if the
density on some open subset of S3 is zero, ”pushing” the ”masses” in the ”hole” should create a non-zero direction
for ∇ρ.

An interesting independent direction of research would assume that the ”bubbles” are concentrated on some
hypersurface of S3 and then try to find out the constraints on the geometry (eg mean curvature) of the hypersur-
face (∗)′-with a number of ”bubbles” tending to ∞ and equally spread on the hypersurface would impose on this
hypersurface.

We develop in the sequel a simple argument which proves that some of these configurations cannot arise:
(∗)′ yields:

Σ
j

ω̄j√
λj |ai − aj |

= 0; i = 1, ..., p

Assuming that the ais are equally spread and that to each of them is assigned a portion volume Vj , with 1
C ≤

Vi

Vj
≤ C, we rewrite these identities in the form:
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Σ
j

ω̄j√
λjVj |ai − aj |

× Vj = 0; i = 1, ..., p

The λjs are also assumed to be comparable, so that 1
C ≤

√
λjVi√
λ1V1

≤ C. We then set:

fp(aj) =
√

λ1V1ω̄j√
λjVj

This means that we define a step function fp whose value on the ball of volume Vj around aj is fp(aj) defined
above.

We also assume that, for some 4
3 ≤ q ≤ 6, Σ

j
(
√

λ1V1‖̄ωj |√
λjVj

)qVj ≤ C, where C is a constant independent of p and of

the points aj etc and we normalize then fp with a use of a constant c so that c(
√

λ1V1‖̄ωj |√
λjVj

)qVj = 1. We assume that

the step functions fp converge as p tends to ∞ to a measurable function non-zero f in Lq(R3), with |f |Lq = 1. (∗)′
then yields that ∆−1f = 0 and therefore f = 0, a contradiction.

This indicates that such configurations verifying (∗)′ cannot arise with a large number of points equally spread on
S3. Of course, the ”proof” that we gave of this result is only heuristic and based on several claims that would need
to be established. But this indicates that the result might be true.

Part IV: Extending the so-called ”Bahri-Coron” argument to Yamabe changing sign-solution. A
(weak) generalization.

We have developed, in collaboration with J.M.Coron, a topological argument in [5] for the existence of positive
solutions to Yamabe-type problems under Dirichlet boundary conditions.

There were two proofs for this argument: a geometric and intuitive proof, presented in our ”Note aux Comptes-
Rendus” [5], was our original argument. It required that no critical point of the function ρ had a critical value equal
to zero (this can be removed with further study). Then, another more algebraic proof was formulated with the help
of J.Lannes [4]. It is now widely considered as the formulation of our argument, whereas the other one [5] does exist.

We would like here to thank again J.Lannes for his help: the second version is more compact and it can be used
for other applications, which are not all about Yamabe-type equations.

We recall in the sequel the broad lines of this argument and we also develop a (weak) scheme, which requires
some stringent conditions-which might nevertheless be verified, see below their specific formulation-for its application
within the context of Yamabe changing-sign solutions.

The topological argument of [4] uses two fundamental facts: On one hand, the argument requires a starting point,
which is the existence of a topological class X which is non-zero in the eg Z2-homology of some lower level set for
J2/3, J

2/3
a = {u ∈ Σ, J2/3(u) ≤ a}.

Then, the next step is to start ”piling up” ”masses” δ(a, λ) ”over” X, thereby moving from the level a to the level
a + S (S the Sobolev constant), a + 2S, ..., a + pS etc (we are using the functional J2/3 here).

At each step, as we move from a + (p− 1)S to a + pS, we construct a topological class Xp which reads (1− t)u +
tPδ(a, λ), u ∈ Xp−1, t ∈ [0, 1]. Pδ(a, λ) is the H1

0 -projection of δ(a, λ) as in []. a runs in some eg sub-manifold of Ω
which is non-zero eg Z2-homology of Ω.

Then, assuming that there is no solution or critical point at infinity in between the level a+(p−1)S and the level
a+pS, the argument of [4] extends under some additional assumption: J

2/3
a+pS+ε retracts under our assumptions onto

J
2/3
a+pS−ε ∪W , where W reads as W = {Σωj,aj ,λj

+ oH1
0
(1); εjk = 1

λk/λj+λj/λk+λjλkd(aj ,ak)2 −→ 0;λid(ai, ∂Ω −→∞}
if we assume, see the conjecture above, that J2/3 has no critical point above the level a.

The level a is critical at infinity for J2/3. Therefore, it corresponds to a configuration
p0

Σ
1
ω̃j,aj ,λj , where we

assume that the ωjs are not δ(a, λ)-functions. Under ”generic conditions (these conditions are formulated on given
precise functions, thus generic conditions is an ambiguous term here), we find that Σωj,aj ,λj

+ oH0)(1) in W reads
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as
p0

Σ
1
ω̃j,aj ,λj +

s

Σ
1
δ(ak, λk) + oH1

0
(1) ie the additional masses are all δ(a, λ)s. We may then recognize the points of

concentration (a1, ..., as) of these additional masses through a selection process as in [2], [4] and the topological
argument proceeds. It can be extended in various ways.

In carrying out such an argument, we thus need first X. The study of ∂∞ completed in Part III, suitably extended
with a further study of the ”de-concentration” flow-lines should be helpful for finding a suitable X.

We then need the ”generic conditions”, also those needed for carrying the expansion of Part II, see [6]. This part
lacks justifications, although these conditions are likely to be met.

Lastly, we need that no critical point at infinity lies between the level a + (p− 1)S and the level a + pS. This can
be considerably improved: such a critical point at infinity d∞ must be of index equal to index X + p + (p− 1)dimc,
where c is the cycle in the homology of Ω which we use. In fact, some further study shows that a flow-line must exit
the set W at the level a + pS and reach d∞, whereas another flow-line must exit from d∞ downwards, to reach the
set W at the level a + (p − 1)S. Assuming that the flow-lines out of d∞ do not carry a de-concentration process
through the function ρ, again this can be understood through ∂∞ of Part III.

The proof of these claims uses variational theory. It can be found in a paper by Y.S.Cheng [7]. The idea is that
the non-trivial topological class Xp−1 = (1 − t)Xp−2 + tδ(a, λ), a ∈ c, found at the level a + (p − 1)S, should be
”cancelled” by d∞. Otherwise, the argument proceeds with the addition to J

2/3
a+(p−1)S of the unstable manifold of

d∞. This union would then act as our new J
2/3
a+(p−1)S and the argument would proceed.

Also, if no flow-line exits W at the level a+pS to reach d∞, then the topological class Xp = (1−t)Xp−1+tδ(a, λ), t ∈
[0, 1], a ∈ c is non-zero in Wu(Xp)∪ J

2/3
a+(p−1)S . We can add to this set Wu(d∞). Its dimension is too low to interfere

with Xp since the dimension of c is at least 1. The conclusion follows.

Conclusion.

This set of ideas (and only partial results) is a preliminary study of the topological features for the Yamabe
sign-changing variational problem on domains of R3. Some of these ideas and expansions might also be useful for the
finding of non minimal solutions to the Yang-Mills equations and the harmonic map problem in dimension 2, although
the technical frameworks of these problems are different and lead to significant modifications of the techniques that
have been sketched above.

Since our initial work with J.M.Coron in [1], [2], [3, [4], [5] etc, much progress has been completed on a wide range
of variational problems belonging to the same family. This will only continue and expand.

It is a pleasure to have written this paper for the sixtieth birthday of Jean-Michel.
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