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0.Introduction.

John Morgan and G,Tian pointed out a mistake in the concluding argument for our paper entitled ”C1 in [2] is
zero” [4], which was recently published in arXiv/Math/DG:1512.02098. We hereby acknowledge this mistake and
correct the computation, leading to the conclusion that C1 is non-zero and that their reference [2] does indeed fully
address and resolve the counter-example which we provided in [3] to the inequality (19.10) in their monograph [1].

For the sake of completeness, we repeat here the first section of [4], providing the framework for our present
computations and relating them to the framework of [4]:

1. Preliminaries.

We assume in the sequel that the curve-shortening flow, starting from a given curve, defines a piece of (im-
mersed)surface Σ. This happens for example when k(c(x0, 0)), the norm of the curve-shortening flow deformation
vector H(c(x, 0)) as in eg [1], is non-zero at a given point x0 of a smooth immersed curve c(x, 0). Extending in section
to the curve-shortening flow, we find that an open set U in M is parameterized as {cµ(x, t)}, µ an extra-parameter,
with ∂cµ(x,t)

∂t = H((cµ(x, t)) = ∇g(t)
S S(cµ(x, t)), S is the unit vector of x −→ cµ(x, t), ((t, µ) frozen) for the metric

g(t) evolving as in [1] through the Ricci flow.
U is now mapped into M × [0, ε) through the map cµ(x, t) −→ (cµ(x, t), t), t ∈ [0, ε).
This is the framework of [2], with the metric ĝ on M × [0, ε). The image of M through this map will be denoted

M1 in the sequel.

2. Correction to the computation of [4], page 3, line 15.

The notations, definitions etc are those of [4], with the special choices made for S (S(c(x, t), s) =
∂c(x,t)

∂x

| ∂c(x,t)
∂x |g(t)

,

over M × [0, ε)), H ( H(c(x, t), s) = ∇g(t)
S S, the covariant derivative along the unit vector S for g(t) to the curve

x −→ (c(x, t), s), (t, s) frozen) etc in [4], section 2.
The mistake takes place page 3, line 15 of [4] when computing (∇̂ ∂

∂t
∇̂SS,H). The metric is variable here and the

derivatives of the Christoffel symbols lead to a non-zero C1. We will be completing the computation in a slightly
unusual way, there is a more direct one, but we do prefer the computation which we are presenting here. We compute:

(∇̂ ∂
∂t
∇̂SS,H) = (∇̂Ĥ∇̂SS,H)− (∇̂H∇̂SS,H)

Now, Ĥ is along (c(x, t), t). Thus, the metric is g(t) and ∇̂SS = H + Ric(S, S) ∂
∂t . Thus,

(∇̂Ĥ∇̂SS,H) = (∇̂Ĥ(H + Ric(S, S) ∂
∂t ),H) = (∇̂ ∂

∂t
(H + Ric(S, S) ∂

∂t ),H) + (∇̂H(H + Ric(S, S) ∂
∂t ),H)

Since, ∇̂ ∂
∂t

∂
∂t = 0 and ( ∂

∂t ,H) = 0, since (∇̂H(Ric(S, S) ∂
∂t ),H) = O(k2),

we find that:

(∇̂ ∂
∂t
∇̂SS,H) = (∇̂ ∂

∂t
H, H) + (∇̂HH, H)− (∇̂H∇̂SS,H) + O(k2) =

= (∇̂HH, H)− (∇̂H∇̂SS,H) + O(k2)

Now, since S is horizontal, ∇̂SS = ∇SS + θ ∂
∂t , θ bounded, so that
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(∇̂H∇̂SS,H) = (∇̂H∇SS,H) + O(k2)

Thus, our above expression is, up to O(k2):

(∇HH, H)− (∇H∇SS,H)

H(c(x, t), s) is equal to ∇g(t)
S S, with S(c(x, t), s) =

∂c(x,t)
∂x

| ∂c(x,t)
∂x |g(t)

. Along H, (c(x, t), s) changes after the time τ into

(c(x, t + τ), s). With s = t, the metric is g(t), so that, along a piece of curve tangent to H as defined here:

∇SS(c(x, t + τ), s) = ∇g(t)
S S

, with S(c(x, t + τ), t) =
∂c(x,t+τ)

∂x

| ∂c(x,t+τ)
∂x |g(t+τ)

instead of ∇SS(c(x, t + τ), s) = ∇g(t+τ)
S S,with S(c(x, t + τ), t) as above.

This is the expression that we would find in (∇HH, H) and there is therefore a difference between H(c(x, t + τ), t)
and ∇g(t)

S S, where S is taken at (c(x, t + τ), t). The difference appears through the Christoffel symbols of the two
different metrics g(t + τ) and g(t). In (∇HH, H) − (∇H∇SS,H), this difference is differentiated along H, that is
along τ and it leaves a single factor for H, giving rise to C1k, with C1 non-zero.

The observations of John Morgan and Gang Tian, leading to the complete resolution of this matter, are fully
acknowledged here.
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