CORRECTION TO ${ }^{"} C_{1}$ IN [2] IS ZERO"

Abbas Bahri

0.Introduction.

John Morgan and G,Tian pointed out a mistake in the concluding argument for our paper entitled " C_{1} in [2] is zero" [4], which was recently published in arXiv/Math/DG:1512.02098. We hereby acknowledge this mistake and correct the computation, leading to the conclusion that C_{1} is non-zero and that their reference [2] does indeed fully address and resolve the counter-example which we provided in [3] to the inequality (19.10) in their monograph [1].

For the sake of completeness, we repeat here the first section of [4], providing the framework for our present computations and relating them to the framework of [4]:

1. Preliminaries.

We assume in the sequel that the curve-shortening flow, starting from a given curve, defines a piece of (immersed)surface Σ. This happens for example when $k\left(c\left(x_{0}, 0\right)\right)$, the norm of the curve-shortening flow deformation vector $H(c(x, 0))$ as in eg [1], is non-zero at a given point x_{0} of a smooth immersed curve $c(x, 0)$. Extending in section to the curve-shortening flow, we find that an open set U in M is parameterized as $\left\{c_{\mu}(x, t)\right\}, \mu$ an extra-parameter, with $\frac{\partial c_{\mu}(x, t)}{\partial t}=H\left(\left(c_{\mu}(x, t)\right)=\nabla_{S}^{g(t)} S\left(c_{\mu}(x, t)\right), S\right.$ is the unit vector of $x \longrightarrow c_{\mu}(x, t),((t, \mu)$ frozen) for the metric $g(t)$ evolving as in [1] through the Ricci flow.
U is now mapped into $M \times[0, \epsilon)$ through the map $c_{\mu}(x, t) \longrightarrow\left(c_{\mu}(x, t), t\right), t \in[0, \epsilon)$.
This is the framework of [2], with the metric \hat{g} on $M \times[0, \epsilon)$. The image of M through this map will be denoted M_{1} in the sequel.

2. Correction to the computation of [4], page 3, line 15.

The notations, definitions etc are those of [4], with the special choices made for $S\left(S(c(x, t), s)=\frac{\frac{\partial c(x, t)}{\partial x}}{\left|\frac{\partial c(x, t)}{\partial x}\right| g(t)}\right.$, over $M \times[0, \epsilon)), H\left(H(c(x, t), s)=\nabla_{S}^{g(t)} S\right.$, the covariant derivative along the unit vector S for $g(t)$ to the curve $x \longrightarrow(c(x, t), s),(t, s)$ frozen $)$ etc in [4], section 2.

The mistake takes place page 3 , line 15 of [4] when computing $\left(\hat{\nabla}_{\frac{\partial}{\partial t}} \hat{\nabla}_{S} S, H\right)$. The metric is variable here and the derivatives of the Christoffel symbols lead to a non-zero C_{1}. We will be completing the computation in a slightly unusual way, there is a more direct one, but we do prefer the computation which we are presenting here. We compute:
$\left(\hat{\nabla}_{\frac{\partial}{\partial t}} \hat{\nabla}_{S} S, H\right)=\left(\hat{\nabla}_{\hat{H}} \hat{\nabla}_{S} S, H\right)-\left(\hat{\nabla}_{H} \hat{\nabla}_{S} S, H\right)$
Now, \hat{H} is along $(c(x, t), t)$. Thus, the metric is $g(t)$ and $\hat{\nabla}_{S} S=H+\operatorname{Ric}(S, S) \frac{\partial}{\partial t}$. Thus,
$\left(\hat{\nabla}_{\hat{H}} \hat{\nabla}_{S} S, H\right)=\left(\hat{\nabla}_{\hat{H}}\left(H+\operatorname{Ric}(S, S) \frac{\partial}{\partial t}\right), H\right)=\left(\hat{\nabla}_{\frac{\partial}{\partial t}}\left(H+\operatorname{Ric}(S, S) \frac{\partial}{\partial t}\right), H\right)+\left(\hat{\nabla}_{H}\left(H+\operatorname{Ric}(S, S) \frac{\partial}{\partial t}\right), H\right)$
Since, $\hat{\nabla}_{\frac{\partial}{\partial t}} \frac{\partial}{\partial t}=0$ and $\left(\frac{\partial}{\partial t}, H\right)=0$, since $\left(\hat{\nabla}_{H}\left(\operatorname{Ric}(S, S) \frac{\partial}{\partial t}\right), H\right)=O\left(k^{2}\right)$,
we find that:

$$
\begin{aligned}
\left(\hat{\nabla}_{\frac{\partial}{\partial t}} \hat{\nabla}_{S} S, H\right) & =\left(\hat{\nabla}_{\frac{\partial}{\partial t}} H, H\right)+\left(\hat{\nabla}_{H} H, H\right)-\left(\hat{\nabla}_{H} \hat{\nabla}_{S} S, H\right)+O\left(k^{2}\right)= \\
& =\left(\hat{\nabla}_{H} H, H\right)-\left(\hat{\nabla}_{H} \hat{\nabla}_{S} S, H\right)+O\left(k^{2}\right)
\end{aligned}
$$

Now, since S is horizontal, $\hat{\nabla}_{S} S=\nabla_{S} S+\theta \frac{\partial}{\partial t}, \theta$ bounded, so that

$$
\left(\hat{\nabla}_{H} \hat{\nabla}_{S} S, H\right)=\left(\hat{\nabla}_{H} \nabla_{S} S, H\right)+O\left(k^{2}\right)
$$

Thus, our above expression is, up to $O\left(k^{2}\right)$:

$$
\left(\nabla_{H} H, H\right)-\left(\nabla_{H} \nabla_{S} S, H\right)
$$

 $(c(x, t+\tau), s)$. With $s=t$, the metric is $g(t)$, so that, along a piece of curve tangent to H as defined here:

$$
\nabla_{S} S(c(x, t+\tau), s)=\nabla_{S}^{g(t)} S
$$

, with $S(c(x, t+\tau), t)=\frac{\frac{\partial c(x, t+\tau)}{\partial x}}{\left|\frac{\partial c(x, t+\tau)}{\partial x}\right|_{g(t+\tau)}}$ instead of $\nabla_{S} S(c(x, t+\tau), s)=\nabla_{S}^{g(t+\tau)} S$, with $S(c(x, t+\tau), t)$ as above. This is the expression that we would find in $\left(\nabla_{H} H, H\right)$ and there is therefore a difference between $H(c(x, t+\tau), t)$ and $\nabla_{S}^{g(t)} S$, where S is taken at $(c(x, t+\tau), t)$. The difference appears through the Christoffel symbols of the two different metrics $g(t+\tau)$ and $g(t)$. In $\left(\nabla_{H} H, H\right)-\left(\nabla_{H} \nabla_{S} S, H\right)$, this difference is differentiated along H, that is along τ and it leaves a single factor for H, giving rise to $C_{1} k$, with C_{1} non-zero.

The observations of John Morgan and Gang Tian, leading to the complete resolution of this matter, are fully acknowledged here.

References

1. J.Morgan and G.Tian, Ricci Flow and the Poincare Conjecture, vol. 3, Clay Mathematics Monograph, AMS and Clay Institute, 2007.
2. J.Morgan and G.Tian, Correction to Section 19.2 of Ricci Flow and the Poincare Conjecture, arXiv:1512.00699 (2015).
3. A.Bahri, A Counterexample to the second inequality of Corollary (19.10)in the monograph Ricci Flow and The Poincare Conjecture by J.Morgan and G.Tian (2015).
4. A.Bahri, C_{1} in [2] is zero, arXiv/math/DG:1512.02098 (2015).
