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Abstract. Given a three dimensional closed contact manifold (M3, α) and a nowhere singular Morse vector-field v in its

kernel, we sketch the construction of the space M/v discussed in [4]. We also introduce spaces of immersed curves in M/v
and an action functional on these spaces. This is the first step in the completion of a program aimed at computing the

homology for contact forms defined in [2] and [7].

1. Introduction.
We consider in this paper a three dimensional closed manifold M and a contact form α on M . We assume that

there is a nowhere zero vector-field v in kerα, which we also assume to be Morse-Smale. v might have some hyperbolic
orbits around which kerα ”does not turn well”, see [1], I.11, [2]. We sketch in what follows a method in order to
compute the contact homology that we have defined in [2], [3]. As we have indicated in earlier papers [3], [4], this
computation requires the use of the space M/v, a highly pathological, non Hausdorff space. We thus have to devote
some time to define such a space, or subsets of this space in a manner that suits our purpose.

The idea here has two sides: on one hand, a proper, acceptable definition of the space of orbits mod v, M/v,
cannot be given. But a ”hybrid” representation of this space, using partly a section to v and partly periodic orbits
can be provided.

The next step is then to consider the Z-structure over such a ”section” provided by the contact structure; namely,
our ”section” will be defined in a v-invariant subset of M , where α ”turns well” along v. Accordingly, every point
x on a v-orbit originating in our ”section” will have infinitely many ”coincidence points”, see [1], Definition 0.1, p
I.7 ,[2], Definition 9, p 196 (a ”coincidence point” of [2] is an ”oriented coincidence point” of [1]; the discrepancy is
unfortunate, but meaningless); these are points zk such that kerα has rotated kπ from x to zk, k ∈ Z (2kπ for [2].
We will use here the original terminology of [1]).

Let ξ be the Reeb vector-field of α. Assume that β = dα(v, .) is, in this subset of M defined by the v-orbits
originating at this ”section”, a contact form with the same orientation as α.

We define in what follows path spaces adjusted to this Z structure. These path spaces are the natural generalization
of the space of immersed curves in S2 of Maslov index zero. This space of immersed curves appears in a natural way
[1], [2], when we study the standard contact structure of S3 and we take for v a vector-field defining a Hopf fibration
in its kernel.

Among all the contact forms of this contact structure, there is a special subset which corresponds to the contact
forms of this contact structure which are invariant through the antipodal map. These are the ”symmetric” contact
forms of this contact structure. They enjoy additional symmetries and the study of their Reeb vector-fields and their
periodic orbits is greatly simplified as a consequence.

The antipodal map is a special map that generalizes to the most general framework of a contact structure and of
a vector-field v, maybe non-singular, of its kernel. Accordingly, the notion of a symmetric α generalizes, as we will
see, albeit under some restrictions. An averaging procedure (section 2) allows to define such a notion.

We then sketch the definition in section 3 (the logical order should have been the reverse one) of the space M/v.
We essentially show how to define a fundamental domain for an iteration map along v along e.g an attractive orbit
of O1 and we show how we can evolve from there and ”travel” using time maps of the one parameter group of v to
the hyperbolic orbits and to the repulsive ones, ”filling” sections etc.
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In the last section, section 4, we sketch the definition of a ”symmetric” functional Js on a space of curves slightly
smaller than the space of immersed curves of M/v and we indicate why Js should become very large or tend to ∞
as we tend to the (hyperbolic to the least, and after some adjustments [6])traces of the periodic orbits of v in M/v.

2. The path spaces, the nearly symmetric α.
Let us assume that the space M/v has been defined as an ”orbifold section” to v, possibly with boundary.

Typically, we would think of the standard contact structure of S3, of v as being a Morse-Smale perturbation in its
kernel of a vector-field defining a Hopf fibration, with an attractive periodic orbit O1 and a repulsive one O2, see [5],
Theorem 1, to find such a vector-field v in an almost explicit form. M/v then can be taken to be a disk transverse
to O1, with boundary O2.

If we then consider an immersed C1-closed curve x(t) in this ”section”, we can lift it above this ”section” along v
into a C1-curve y(t) so that ẏ(t) reads as aξ + bv, a positive and y(t) is derived from x(t) by v-transport. y(t) is not
unique, neither is it necessarily a closed curve. Rather, given one of the lifts y(t), all other lifts are indexed by an
integer k ∈ Z and derived using the map along the v-orbit which assigns to a point x0 the point xk uniquely defined
by requiring that β (thus ξ) has completed k half-revolutions between x0 and xk.

In order to have y(t) closed, we may have to ask that x(t) be a path, rather than a closed curve, starting at a
point x0 and ending at a point x1, both in the ”section” and both on the same v-orbit.

Let T be the map, defined on the ”interior of the section”, which assigns to x0 of this ”section” the next point x′0
on the v-orbit through x0 which belongs again to this ”section”.

If the end point x1 of the curve x(t) defined above is equal to Tm(x0) for suitable values of m and if ẋ(1), the
tangent vector to x(t) at x1, is equal to DTm(ẋ(0)), then the curves y(t) will be closed curves as we will see.

Not only the curve x(t), t ∈ [0, 1], lifts into y(t) and the corresponding family of closed curves above x(t). The
curves in this ”section” defined by T i(x(t)), t ∈ [0, 1], i ∈ Z all lift into the same family of curves y(t). So that we
find it natural to introduce:

Definition 1. the space of curves ΛT m(M/v) (M/v is our ”section”) defined as the set of C1-curves in M/v running
from a point x0 of M/v to the point Tm(x0).

The map T defines a transformation T∗ of this space and we will denote Λ∗T m(M/v) the quotient of this space by
T∗.

Our space could be in fact more specific because M/v is typically a stratified space of dimension 2, with boundary
one of the attractive or repulsive orbits. Typically, M/v is a disk, with boundary an attractive periodic orbit O1 for
example.

We can arrange so that Tm, restricted to O1, is the identity map and that ξ rotates exactly mπ in the v-transport
along O1. It is then natural to consider the space (M/v)/O1, the topological quotient of M/v by its subset O1 and
therefore to introduce the space Λ∗T m((M/v)/O1) = Λ∗ of C1-curves running in (M/v)/O1 from an initial point x0

to Tm(x0) mod out by the map T ∗ (defined as above, but acting on these new spaces).
Embedded into Λ∗, we find the space of C1-immersed curves Imm∗.
The group S1 acts on these spaces by time translation. Furthermore, above any given curve in Imm∗, we find a

family of closed curves y(t), t ∈ [0, 1], with ẏ = aξ + bv, only that the constant a might change with the curve y in
the family. a does not change if the form α is ”symmetric”, that is if, whenever the v-transport, along a v-orbit from
x0 to x1, maps ξ into λξ, then λ = 1.

Of course, given a contact structure, a vector-field v in its kernel and a contact form α in this contact structure,
we cannot expect α to be ”symmetric”; neither can we assume, in general, the existence of a ”symmetric” α.

The nearly symmetric α.
However, after averaging α, we can assume that α is nearly ”symmetric”. This averaging procedure goes as follows:

considering a point z0 above M/v, we introduce the points zi, i ∈ [−N, N ], N large. zi is defined by the condition
that it is the ith-point on the v-orbit such that α is mapped onto λiα from z0 to zi. A candidate in order to replace



M/v 3

α at z0 is 1

(
N

Σ
i=−N

1
λi

)

α; this is formally an almost symmetric contact form in the same contact structure than α. It is,

by Lemma 1 of [6] v-convex (that is, denoting θ this form that has v in its kernel, dθ(v, .) is also a contact form with
the same orientation than θ) since each of the forms λiα is v-convex (they are pull-backs of α through v-transport
maps); but it has the disadvantage to tend to zero as N tends to ∞ on any v-orbit that is asymptotic to an attractive
or a repulsive periodic orbit of v.

The contact form (
N

Σ
i=−N

λi)α is also nearly symmetric and does converge on any v-orbit tending at ∞ to attractive

or repulsive periodic orbits. It is, however, not necessarily v-convex.
Near an attractive or a repulsive periodic orbit of v, a model for (α, v) has been provided in [6] p47. This model

can be slightly modified so that λi = γ̄i, with 0 � γ̄ � 1. It follows from this model that (
N

Σ
i=−N

λi)α is also v-convex

(terminology of [5], Lemma 1) near the attractive or repulsive periodic orbits of v (taking (α, v) according to the
model).

This ”nearly symmetric” form also ”turns well” along v wherever kerα ”turns well” along v. We can then use, as
in [6], the second order differential equation along v:

(1)[v, [v, ξ]] = −ξ + γ(s)[ξ, v]− γ′(s)ds(ξ)v

with s(.) denoting the length along v on a given piece of v-orbit with a given origin; this differential equation
allows to modify α, ξ, see Lemma 1 of [6], by rescaling the rotation of kerα along v.

Starting from the data that we have near each attractive or repulsive periodic orbit, we can evolve along v-orbits
and induce a uniform rotation, thereby deriving a nearly symmetric α outside of small tori around the attractive
and repulsive periodic orbits of v, along subsets of M where sections to v can be defined; this nearly symmetric αs

is now v-convex, this is embedded in the rescaling with the use of (1); it is furthermore equal to (
N

Σ
i=−N

λi)α near the

repulsive or attractive periodic orbits of v.
If there are hyperbolic orbits of v, global sections outside of the attractive and repulsive periodic orbits might

not be available. We need therefore to remove, in a first step of in our construction, the hyperbolic orbits and their
stable and unstable manifolds. The rescaling and the definition of an almost symmetric αs can be completed on the
remaining set. In order to extend the definition of our form to the hyperbolic orbits and their stable and unstable
manifolds, we follow the construction of [6]; in [6], this construction was carried near a hyperbolic orbit such that
kerα did not ”turn well” along it. The general idea would be to extend it to all hyperbolic orbits . This construction
needs to be carried out in great detail in the present framework (with the aim of deriving a nearly symmetric form
in the vicinity of these orbits, or having the associated functional, see section 4 below, tend to ∞ as the curves come
to intersect one of these hyperbolic orbits).

Similarly, although the definition of this nearly symmetric contact form is very precise near the attractive and
repulsive orbits, the effect of the rescaling, completed above with the use of (1), on the associated variational problem
(to be ”defined” in section 4, below) and the behavior of its critical points at infinity near the repulsive or attractive
periodic orbits of v need to be thoroughly understood.

3. M/v.
Let us now enter into more details in the construction of ”M/v”. We assume that v has two periodic orbits, O1

which is a attractive and O2 which is repulsive, and a number of periodic orbits which are hyperbolic; but our v
is Morse-Smale, with no cycles. For simplicity, let us assume that we have only two hyperbolic periodic orbits O3

and O4, with O3 dominating O4, that is the unstable manifold of O3 intersects the stable manifold of O4 and not
vice-versa. We want to define the hybrid object M/v.

For this, we consider the trace of the stable manifold of O3 on the boundary ∂T1 of a torus T1 transverse to v
around O1.

If the eigenvalues of the Poincare-return map at O3 are negative, then the trace of Ws(O3) on ∂T1 has only one
connected component.
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If the Poincare-return map at O3 has positive eigenvalues, then there are exactly two connected components to
this trace because the stable manifold of O3, when deprived of O3, has two connected components and they do not
intersect. Each of these is an embedded differentiable closed curve. By standard arguments, it follows that either
both curves are embedded isotopic closed curves which both read homotopically as ma+nb on the two S1-generators
of the fundamental group of ∂T1; or one or both of them are contractible to a point in ∂T1.

Let us assume that we are in this second case: the results which we derive then can be adapted to the first case.
Let us think of the intersection of the stable manifold of O4 with ∂T1. This intersection, though an embedded

differentiable curve, is neither closed nor compact. It could also not be connected We claim that it is made of a
finite number of connected components, each of them being an embedded differentiable closed curve whose closure
is obtained by addition of one or both connected components of Ws(O3) ∩ ∂T1. This is a fine point which we need
to understand.

Let us also assume for simplicity that none of the components of the trace of Ws(O3) on ∂T1 is homotopic to zero
in ∂T1.

Assuming in the sequel that both components of Ws(O3)∩∂T1 are not homotopic to zero, they both read ma+nb,
m, n prime to each other (they are then homotopic since they do not intersect). The components of Ws(O4) ∩ ∂T1

then ”spiral” towards these two isotopic embedded curves.

1.ĉ and the fundamental domain.

We consider a section ĉ to Ws(O3) ∩ ∂T1 in ∂T1. This section is made of two small embedded pieces of curve
defined on two intervals, which are transversal to each of the components of Ws(O3)∩ ∂T1 and which are connected
by two other embedded pieces of curves in ∂T1r (Ws(O3)∪Ws(O4))∩∂T1. We find a closed differentiable embedded
curve transverse to both traces of Ws(O3) and Ws(O4) on ∂T1.

We now consider the Poincare-return map f of v from a section σ to v near O1 containing ĉ. σ needs not be
transverse to v at O1, but it should be everywhere else. The choice is very clear if, denoting b the generator transverse
to O1, m in the couple (m,n) defining the homotopy class of Ws(O3) ∩ ∂T1 is non-zero. We can take for σ a disk
transverse to O1 in T1.

We assume, without loss of generality, that f(ĉ) is in σ. f(ĉ) is drawn on the boundary of the solid torus f(T1).
f is generated by the one parameter group of v, γs and we thus can write f = γs(.), where s(.) is an appropriate
function. We can consider the family of tori γts(.)(T1), t ∈ [0, 1]. They define a family of curves in σ which define
a fundamental domain ∆. We iterate this fundamental domain ∆ under positive and negative powers of f . The
negative iterations end at O1. The positive iterates go where they should go, but we are going to track a few portions
of ∆ under positive iterations.

Observe that ĉ intersects each of the components of Ws(O3)∩∂T1 at exactly one point. This point, under positive
iterations, will get closer and closer to O3. Adjusting f nearby O3 to become the Poincare-return map of O3 at one
of its points z, in an appropriate section σ1, a portion of ∆ defined by two small transversals in ĉ, f(ĉ) containing
the points of Ws(O3) in these sets (there are two of them in each of ĉ, f(ĉ)) and two other ”vertical ” pieces of curves
connecting these two couples of points(we thereby find a small ”rectangle” in σ) will reach σ1 under iteration from
both ”sides”. Indeed, the ”vertical”curves connecting the points of Ws(O3) under (adjusted) iteration will reach
O3 on two distinct sides, thus z in σ1 from two distinct sides. Just as in [8], in Morse Theory, when considering a
non-degenerate critical point, these two ”vertical” transversals then ”spread” under iteration along Wu(O3)∩σ1 and
its iterates. we will denote this set W̃u(O3)z. It is clear that we have to add it to ∪fn(∆) in order to define M/v.

We now have to evolve to O4 from O1 and from O3. We may assume that the two small transversals in ĉ to
Ws(O3) contain all of Ws(O4)∩ ĉ and thus that ĉ outside of these small transversals ”spouses” Ws(O4)∩ T1 without
intersecting it. Thus, the iterates under f of Ws(O4) ∩ ĉ all go to σ1 and, from there, should go to O4.

This situation, the lower stage of the tower of domination, offers a new background which we want to discuss
now: the first case is when O3 dominates O4 and does not dominate any other hyperbolic orbit. We first elaborate
more on this specific situation. We then consider the case when O3 can dominate more than one, typically two-the
arguments then generalize-hyperbolic periodic orbits.
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Let us discuss the first case. Let T be the Poincare-return map of O4, defined on a section σ4 to O4, at a point
of O4. T is generated by the one-parameter group of v and therefore T is homotopic to the identity map, in the
set of invertible two dimensional maps. Thus, the differential of T at the origin has a positive determinant. O4

is hyperbolic, thus the differential of T has two real eigenvalues, of the same sign, one larger than one in absolute
value, the other one less than one in absolute value also. The differential of T 2 has only positive eigenvalues. Let
us consider Ws(O3) ∩ σ1, which is made of one interval, two intervals I+, I−, after removing the fixed point. These
two intervals are part of two half-lines L+, L− which span through the use of the one parameter group of v all of
Wu(O3) (after the addition of O3). We can imagine that σ1 has been extended via the use of the Poincare-return
map of O3 and then the time 1; t-map of v so that it reaches near O4 and ”touches” σ2 (σ1, after iterations, and σ2

have to intersect since O3 dominates O4).

2. How O1 dominates O3: a special case.

Let us assume that σ1 and σ2 can be built as small hyperbolic neighborhoods of pieces of sections to v in Wu(O3)
and Ws(O4) respectively. I+, I− and L+, L− have been defined for Wu(O3), but they can also be defined for O4.
We denote them J+, J−, P+, P−. We use I±, J±, L±, P± to define these sections. The I’s and J ’s are used when
we are on the ”sides” of Wu(O3) and Ws(O4) that intersect, taking I and J until a common point x which we may
choose to be in σ2, near O4.

Observe that Wu(O3) and Ws(O4) intersect in fact at infinitely many points, a subset of which is derived from x
through the use of T .

We then claim-and this claim is more important for the complete understanding of this specific configuration
rather than for the definition of M/v-:

Proposition 1. Assume that σ1 and σ2 can be built as small hyperbolic neighborhoods of pieces of sections to v
in Wu(O3) and Ws(O4). Then, there is another set of points of intersection generated by a y which is not derived
from x by iterations. In fact, the intersection points can be viewed as couples of such points (x, y) together with their
iterates.

Proof of Proposition 1. Indeed, considering T 2, we know that its differential has positive eigenvalues at zero. thus
T 2 maps J+ into J+ and J− into J− respectively. Without loss of generality, we may assume that it is J+ and I+

that intersect at x. We consider then Wu(O3) ∩ σ2 and more specifically the subset corresponding to I+.
Part of ĉ was made of two small pieces of curves transverse to Ws(O3) ∩ ∂T1. we also considered f(ĉ), thus the

image under f of these two small pieces of curves and we connected the ends of each corresponding pair of intervals
by ”vertical” lines; this yields two pairs (V1, V2) and (V3, V4) of ”vertical lines” which we iterate using f . The related
lines are again denoted Vi. Each Vi is as close as we please to the ”history”, under iteration”, of one of the two points
of ĉ ∩ (Ws(O3) ∩ ∂T1). This ”history” defines a set of lines in Ws(O3) ∪Wu(O3) ∪Ws(O4) ∪Wu(O4), in fact in the
intersection of these sets with the respective sections σ, σj . each Vi neither intersects Ws(O3), nor Ws(O4).

The smaller fundamental domain defined by the two small ”vertical” lines connecting the two intervals and their
images under f spread under iteration and ”fill” σ1 (up to the addition of Wu(O3) ∩ σ1) and, from there, they
”spread” until they ”touch” σ2 just as σ1 did. From there, we use T and we move to σ2, which we can view to
be bounded on each side by portions of the Vis. Under T 2, the I+-portion of Wu(O3) ∩ σ1 maps into a half-line.
Indeed, the image curve does not intersect the Vis, because, if it did, then some points of Vi would not,under reverse
iteration, go to O1, but would go to O3. It is therefore entirely contained into σ2. If the differential of T at the origin
has positive eigenvalues, then we can use T in lieu of T 2.

This half-”line” intersects J+, that is the portion of Ws(O4) ∩ σ2, into at least one point, namely x,hence also
at its iterates under T 2. Under iteration, it ”spreads” and its tangent direction becomes pore and more parallel to
Ws(O4) ∩ σ2.

If the differential of T at zero has negative eigenvalues, then T 2k+1(x) is in J− rather than J+ and all the points
of intersection of J+ ∩ T 2(I+) would then read as T 2k(x) if x and only x spans this intersection. However, the
orientation of T 2(I+) alternates at consecutive intersection points, going from left to right (according to a certain
orientation of Ws(O4) ∩ σ2) at a point and from right to left at the next point. These consecutive points, because x
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spans the intersection set, are iterates of each other under T 2. This yields a contradiction because the eigenvalues of
the differential of T 2 at zero are both positive.

The same argument works with T in lieu of T 2 if the differential of T at zero has positive eigenvalues.J
We now have tracked our fundamental domain under evolution.we have understood how one of the two sides

of each of σ1 and σ2 are ”filled” by the smaller fundamental domain under iteration. The other sides are ”filled”
because ĉ intersects as well the trace of the stable manifolds of O3, O4 on ∂T1 and we can ”drive” M/v, with a
proper choice of f to bring our set under iteration to ”fill” the other sides. We add to these iterated sets the two
curves Wu(O3) ∩ σ1, Wu(O4) ∩ σ2. The construction of M/v is nearly completed in this easier framework, when O3

dominates only O4. We still need to understand how this set behaves near O1, O2.

3. The general case.

There is a more complicated case, when O3 dominates more than one hyperbolic orbit; e.g O3 dominates O4, O5,
both hyperbolic orbits. The construction of M/v is then greatly simplified by the following Proposition:

Proposition 2. Assume N is a two-dimensional surface transverse to v and intersecting e.g Wu(O3) at a point z
which is e.g on the v-orbit of a point of e.g L+. Then N ∩ Wu(O3) contains a whole half-line which is an image
of L+ through the one parameter group of v. This statement holds when N is a surface with boundary; then L+ is
replaced by an interval I+.

Proof of Proposition 2.
The intersection of Wu(O3) and N is a transverse intersection, which therefore yields a differentiable manifold

of dimension 1 transverse to v. Let us consider the connected component of this intersection containing z. It is a
one dimensional manifold that has a natural projection π over L+/J+. π defines a fibration because any two points
of π−1(`), ` given in L+, can never coalesce: v is transverse to this manifold. It follows that this fibration extends
throughout L+, unless it is limited by the boundary of N .J

4. Outline of the construction of M/v.

The construction of M/v is derived from the choice of the curve ĉ on ∂T1 and from Proposition 2. A careful
choice of ĉ allows us to move from the attractive orbit O1 to the other hyperbolic orbits and to the repulsive orbit
(there could be more attractive and repulsive orbits; we are only describing a simple case here). As we have seen
above, near a hyperbolic orbit O3 which is ”directly” dominated by O1 (i.e there is no intermediate hyperbolic orbit),
the iterates of a fundamental domain built using ĉ and its image through the Poincare return map of O1 will fill a
suitable section of this hyperbolic orbit from ”the two sides” (the process is different if the Poincare return map at
O3 has positive or negative determinant; in the first case, the trace of the stable manifold of O3 on ∂O4 is connected
while, in the second case, it has two connected components).

The construction of M/v is therefore very clear near O1 and from there to all such O3s.
Then, from a hyperbolic orbit O3, we may move to another hyperbolic orbit O4. There, we use Proposition 2

which tells us that, because our iterations of our fundamental domain include a point of the stable manifold of O4,
they will contain all the trace of this stable manifold in an appropriate section. In this way, a full ”side” of this
section of O4 will be ”filled”. The other side will be ”filled” either through a similar process, that is starting from
O3; or directly from ĉ because ĉ is chosen appropriately to intersect the trace of the part of the stable manifold of
O4 that goes directly to ∂O1.

The process continues in this way (we add to the sections which we encounter the traces of the hyperbolic orbits
Ois in these sections), until we have exhausted all hyperbolic orbits. We are then left with O2. Our fundamental
domain under iterations will come to O2 in a complicated manner, depending also on the linking number of O1 and
O2, of O2 with the other Ois.

This is the part of the construction of M/v that requires further study, until we know precisely what is involved
in this construction and this object becomes thereby a straightforward object to use.
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Despite the fact that our construction of this object is only sketched, we are going to introduce a function on the
space of curves Imm∗ defined in section 1 on this space and study its properties. This should lead us to a method
for the computation of our homology [2], [3].

4. The functional.
The natural functional to use on the space of curves ΛT m(M/v) defined in section 2 is the action functional

J(x) =
∫ 1

0
αx(ẋ). This functional is invariant under T if the contact form α is ”symmetric”. However, the contact

form built through the averaging procedure of section 2 is only nearly symmetric; it is not symmetric; and the space
M/v of section 3 is very well defined only outside of the periodic orbits of v: for example, if we consider the case of
the standard contact structure of S3 and if v is a Morse-Smale perturbation of a vector-field defining a Hopf fibration
in kerα, O2, that is the repulsive periodic orbit, is a ”boundary” for M/v.

Let us consider in more details the case of the standard contact structure on S3, with v having two periodic orbits,
one attractive O1 and the other one repulsive O2. The fundamental observation in this easier framework is that
the ”symmetrized” α at points x close to O1 and O2 (how close depends also on N , the number of iterations of T
involved in the ”symmetrization” process) reads αx = λ(x)α0x, λ(x) tending to ∞ as x tends to O1 ∪O2; that is the
”symmetrized” α has a coefficient tending to infinity on the standard contact form of S3.

1. Proposition 3.

Some more is true; namely:

Proposition 3. v around O1 and O2 may be arranged so that
i) the contact vector field ξ(x) of the ”symmetrized” α tends to zero in norm as x tends to O1 ∪O2.
In addition,
ii) denoting ψ be the map which assigns to a point x the next coincidence point ([1], [2]) on the positive v-orbit

through x, then, after perturbation, the orbits of ξ do not connect x0 and ψj(x0) for x0 in O1 ∪O2 and for j ∈ Z.

We give below the proof of Proposition 3. Using the results of [6], properly generalized, we expect Proposition
3 to hold for every nowhere zero Morse-Smale v in kerα. The results of [6] are about the behavior of α around
hyperbolic periodic orbits of v along which kerα does not turn well. They of course also apply to hyperbolic orbits
around which kerα turns well; that is, it should also be possible in such a case to build ”mountains” around these
hyperbolic orbits (essentially, i. of Proposition 3 should hold around hyperbolic orbits). But, we can then also hope
that such ”mountains” can be built around the regions where kerα does not turn well along v. Symmetrizing α
outside of small neighborhoods of such regions, we would try to perturb such a symmetric α so that ii) of Proposition
3 would hold.

Since there is some hope that Proposition 3 generalizes, it is useful to prove that this Proposition holds in the
simpler case of the standard contact structure of S3 and to indicate, pending the complete and rigorous proof of
all details, how the computation of the homology, or the existence of periodic orbits for ξ can be derived from this
procedure.

Proof of Proposition 3. Given an integer N , as x moves closer to the e.g attractive orbit O1 of v, the negative
iterates of ψ are expanding maps. Assume that kerα rotates twice (v is a perturbation of one of the Hopf-fibrations
vector-fields in the kernel of the standard contact form of S3) along O1, with a uniform rotation and a uniform
coefficient of contraction −1 � γ � 0 after a quarter of a turn along O1, so that the coefficient of contraction after
a full turn is γ4. This can be achieved after a suitable perturbation of v, kerα near O1. The negative iterates of α0,
at a point x0 of O1 therefore read as multiples γ−iα0. Their sum at the order N (from 0 to −N) therefore reads as
1−γ−N−1

1−γ−1 α0. The coefficient in front of α0 tends clearly to ∞ and this fact cannot be destroyed by the contribution
of the positive iterates, since ψ is contracting near O1.

This is the basic phenomenon from which, after some additional work estimating the derivatives along ξ, [ξ, v] of
λ (the ”symmetrized” α reads λα0), i)follows.

For ii), we observe that, given e.g y a ξ1-piece of orbit of a symmetric (over a limit process, outside of O1 ∪O2 )
contact form α1 connecting two points x0 and ψj(x0) of e.g O1, if we perturb this symmetric α1 in the vicinity of a
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point of this ξ1-piece of orbit into another, symmetric (the symmetry is along ψ and its iterates) form α2, there will
still be, if the intersection problem satisfies the appropriate transversality conditions, in the vicinity of y a ξ2-piece
of orbit connecting two points x1 and x2 of O1, one close to x0, the other one to ψj(x0); but, generically, x2 will not
be ψj(x1). ii) follows.J

2. M∗/v and the symmetric αs.

We now consider the case of a more general nowhere zero vector-field v in the kernel of α, which we assume
to be Morse-Smale, having a number of periodic orbits ∪Oi, some elliptic, the other ones hyperbolic. Using the
Propositions and the results of the previous section, we define the space M/v. We can also define the space:

M∗/v = M/v r ∪Oi

The averaging procedure for α can be completed on M∗/v.
If we start from a point of M r ∪Oi, the positive and negative iterates under ψ2 (the transport map along v

mapping a point x0 to the next oriented coincidence point (see [1], [2]) on the v-orbit through x0) of a given
point end up near the attractive and repulsive orbits of v. It follows that ”averaged” limit forms of α, αs are
well defined point-wise on M∗/v, but might have, as one can easily see, discontinuity points along the stable and
unstable manifolds of the hyperbolic periodic orbits of v. If there are no such hyperbolic orbits, as in the case of
the standard contact structure of S3, with v a small perturbation of a vector-field in kerα defining a Hopf fibration,
then a symmetric form αs is well-defined and continuous, differentiable on M r ∪Oi.

This contact form αs can be used to define a symmetric functional Js, that is a symmetrized version of J (see
section 1) on the curves of Imm∗ which do not intersect ∪Oi.

We need therefore to understand the behavior of this functional on the curves of this set that are in the immediate
vicinity of curves intersecting ∪Oi. Typically, we would want that such curves are ”far” from being critical points of
Js and we would in fact want more: namely, we would want that the functional Js tends to ∞ as we approach such
curves.

3. Js near the hyperbolic orbits.

For hyperbolic orbits (and this also should solve the discontinuity issues involved by the hyperbolic orbits in the
definition of αs), we have devised a construction in [6]. This construction was carried around hyperbolic orbits
having the property that kerα does not rotate well along them. Using large amounts of rotation near the attractive
and repulsive orbits, one could build a contact form in the same contact structure such that its associated contact
vector-field became tiny near these orbits. This construction can be carried out around the other hyperbolic orbits
as well, that is around the orbits along which kerα turns well. It should imply that a functional J can be built on
Imm∗, extending Js. J should be very large or ∞ on the curves of Imm∗ entering and exiting a small neighborhood
of a hyperbolic orbit.

4. Three additional observations.

There are three additional observations that are useful:
First, this procedure should work around the regions of M where kerα does not rotate well along v. The hope is

that a construction similar to the one introduced in [6] for the corresponding hyperbolic orbits can be extended to
this framework.

Second, i) of Proposition 3 above implies that the functional J should be very large or ∞ on a curve of Imm∗

that enters a given neighborhood of an attractive or repulsive periodic orbit of v, then intersects this periodic orbit,
then exits this given neighborhood (that is Js should tend to ∞ as we approach such a curve).

Third, ii) of Proposition 3 should also generalize into the statement that there are no curve made of pieces of orbits
of the symmetric ξs up to v-jumps between points x and ψ2(x) intersecting at least one Oi (repulsive, attractive, or
hyperbolic). This is a weaker result than the results foreseen above which say that J is very large or ∞ at curves
crossing ∪Oi. But it should be a useful additional result.
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This provides a very rudimentary version of a scheme in order to compute the homology defined in [3], [4], [7].
But, to the least, one can see here a program; and a glimmer of a reasonable hope that the non-compactness issues
can be overcome in Contact Form Geometry.
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