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Let M3 be a three dimensional, orientable compact manifold without boundary
and let α be a contact form on M3. Choosing a vector-field v in kerα and using
the ”dual” form β = dα(v, .), we have considered in earlier works [1], [2], [3], [4] the
variational problem defined by the functional J(x) =

∫ 1

0
αx(t)(ẋ(t))dt on the space of

variations Cβ = {x ∈ H1(S1,M)such that β(ẋ) = 0 and α(ẋ) = a positive constant}.
This variational problem has to be set up properly. This requires some work

which we will not discuss here. We will summarize in[6] the body of hypotheses
underlying this approach and the family of conjectures under which this setting
acquires full generality, see [5], section 4 for preliminary discussions of this issue.

Let us assume for simplicity that β is also a contact form with the same orien-
tation than α. Then this variational problem is well defined, its critical points are
the periodic orbits of the Reeb vector-field of α, which we denote ξ.

A homology can be defined using the flow-lines originating at these periodic
orbits see [3], [4], see in particular [3],page 23 for the statement of the hypothesis
(A3)-again we refer to [6]for the discussion of (A3) and all other assumptions .

In [4], we have established that most of the flow-lines of this homology were
compact, see Theorem 1 of [4] which meant that they did not connect periodic
orbits to asymptots but only to other periodic orbits. We have conjectured that all
of them were compact. This is specific of the flow-lines involved in the definition of
this homology and probably does not hold for all flow-lines originating at a periodic
orbit. We have assumed in order to derive this result Hypotheses (A) and (B), see
[4]-we restate Hypothesis (A) below. These hypotheses will also be discussed in [6].

S1 acts on Cβ .
We identify in this paper, using the Fadell-Rabinowitz cohomological index [7]

of the space Cβ , the generators of this homology for odd indexes.
The result contains two parts: the direct part, see section 2 of the present work,

where we establish that the unstable manifold of a periodic orbit of odd index
2k + 1 generates, after removal of the curves of A+, these are the curves such that
the v-component b of their tangent vector does not change sign,the pull-back of the
2k-dimensional generator of the real cohomology of the classifying space ES1 → BS1

to the principal bundle Cβ → Cβ/S1.
This direct part has an heuristic converse which we establish in section 3. Namely,

we consider the ”bad” spaces- ”bad” because they might be not separated- M/v
obtained by identification of points on the same v-orbit and its loop space Λ(M/v).

We also ”average” α over a large family of coincidence points ( coincidence points
are points on the same v-orbit such that kerα rotates kπ, k ∈ Z between them in the
v-transport),we thus derive an ”almost” symmetric α0 and an associated functional
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J0. Because of the ”symmetry”, one can think of J0 as defined on Λ(M/v). Critical
points are then periodic orbits of the ”symmetric” α0 or ”geodesics” for the Finsler
metric defined by α0 on the ”bad” space M/v. While M/v and Λ(M/v) can be
”bad” spaces, the difference of topology at the crossing of such a ”geodesic” and
its critical level are well defined.

Thinking of the lifts to Cβ , we find on one hand that these ”geodesics” have a
Maslov index and on the other hand, we find that the difference of topology in Cβ

above them is complicated. After exploration, see Proposition 6 in section 3, we
find that for S1-bundles over M/v the difference of topology (expressed as pairs
of sets) for Cβ is the difference for Λ(M/v) multiplied by S1 and that in all other
cases, the differences of topology in Cβ and in Λ(M/v) were the same.

We exclude- for simplicity- the case of S1-bundles. We then prove that if the
Fadell-Rabinowitz index of the level sets of J0 changes at the crossing of the critical
level of the ”geodesic”, this ”geodesic” is of Maslov index zero and lifts to a periodic
orbit.

This falls short of a computation of the homology in two regards: first, we still
have to prove that Cβ is for example of infinite Fadell-Rabinowitz index. This
holds true on S3 for example see [2], p268. The more general setting where this
method acquires full generality requires to consider the space Cβ only on part of
the underlying manifold M , after removing some curves or points see [5], section
4, for a preliminary result. A similar result would have to hold in this setting ( at
least a result stating that this index changes along the level sets).

Second, the converse part of this result is heuristic exactly in measure of how
bad our spaces near the ”geodesics”, how ”symmetric” an α0 we can build etc, we
have made this entirely explicit.It ultimately reduces to the understanding of the
behavior of kerα on the ω-limit set of v. For example,if we could find a v in kerα
such that kerα ”turns” well along v see [1] pp24-25 - this means that every point
has at least a coincidence point for positive times and for negative times- outside of
a finite set of ( we may assume hyperbolic) periodic orbits of v and non degenerate
zeros of v, we believe that this heuristic part can be made entirely rigorous.

Before proceeding with the outline and the main body of this work, we point out
the following basic facts:

All curves x of Cβ have a tangent vector which can be decomposed into ẋ =
aξ + bv. A key result in this theory [2], [3] states that there is a decreasing pseudo-
gradient for J on Cβ which never increases the number of zeros of b. This result is
assumed and used throughout [3], [4], [5]. It is as well used here.

Another consequence of the existence of this pseudo-gradient is that the set A+

of curves such that b does not change sign and is not identically zero is invariant
under this decreasing flow. This is also a basic fact used in this paper.

Furthermore, the asymptotes of this pseudo-gradient have been studied in detail
in [2], [3]. These asymptotes correspond to curves y∞ made of pieces of ξ-orbits
alternated with pieces of ±v-orbits, The ±v-jumps obey various constraints [3].
An unstable manifold Wu(y∞) is associated to these critical points at infinity. The
maximal number of zeros of the v-component b for a curve on this unstable manifold
is denoted θ(y∞). This number never increases as we move along the decreasing
pseudo-gradient from a critical point (at infinity)to another critical point (at infin-
ity) which it dominates (i.e there is a decreasing flow-line from the first one to the
second one).
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We proceed now with the outline of the paper:
Section 1 is devoted to state and prove several particular results needed for the

homology computation:
We study in particular the set of curves x of Cβ which are near the level zero of

our functional. For a given integer k0, we consider a subset of this set characterized
by the requirement that the v-component of the tangent vector to a curve of this set
should have at most 2k0 zeros. We estimate the Fadell-Rabinowitz cohomological
index of such a subset.

We then make several observations about the set A+ of curves of Cβ such that
their v-component b does not change sign. We introduce in this framework a hy-
pothesis, Hypothesis (C) which is entirely not needed in this work but renders the
proofs and the statements of the results easier.

We conclude section 1 with a study of the unstable manifold of some special
critical points at infinity of J , see [3], which have a single ±v-jump. Given such a
critical point at infinity y∞ of index 2`, we can modify, using the results of [3] pp
80-102, α in its vicinity so that θ(y∞) = 2`− 2.

In section 2, we consider a periodic orbit of odd Morse index and after manipu-
lating its unstable manifold and removing from it the functions of A+, we introduce
a (relative ) cycle of Cβ .We prove that the integral on this cycle of the S1-Chern
class of the appropriate dimension is non zero. This describes the change of topol-
ogy associated to a periodic orbit of odd Morse index whenever this periodic orbit
contributes to a non zero cycle in the homology which we have defined in [3].

Section 3 is devoted to establish a ”converse” to this result, hence a characteriza-
tion of these cycles. we introduce the ”bad”spaces M/v, Λ(M/v), we ”symmetrize”
α into α0. The variational problem corresponds then (in an extended sense) to the
problem of finding ”geodesics” for the Finsler metric defined by α0 on M/v. We
then prove that if the Fadell-Rabinowitz index of the level sets of the functional
changes, the lift to M of the critical point is a closed periodic orbit of the Reeb
vector-field of α0.

We proceed now with the main body of the paper:

1. On the Fadell-Rabinowitz cohomological index of certain sets.

We consider the curves of Cβ which have a = 0, thus ẋ = bv. Equivalently, this
set may be described as J0, the level zero of the functional J extended to Cβ . These
curves are drawn on v-pieces of orbits. We consider in the sequel the component of
of J0 where ∫ 1

0

b = 0.

We will more specifically consider, for k0 ∈ N, the set:

Mk0 = {x ∈ Cβ ; ẋ = bv,

∫ 1

0

b = 0, b has at most 2k0 zeros }.

Clearly, for a curve x ∈ Mk0t, the function b , which is the v-component of ẋ,
has at least two zeros and at most 2k0 zeros. Thus denoting pk0 the L2-orthogonal
projection onto Span{cos2πjt, sin2πjt, j = 1, · · · , k0},pk0(b) is non zero. This map
is S1-invariant. Thus:
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Proposition 1. Mk0 is of Fadell-Rabinowitz index at most k0 − 1

Next, we come back to the set A+. As pointed out in the introduction, this set
is invariant through the decreasing pseudo-gradient Z of [2]. By the results of [3],
we may also assume that the stable and unstable manifolds of the various critical
points (at infinity) are transversal.

Considering a stratified set S+ in A+, we claim that:

Proposition 2. Let y(∞) be a critical point(at infinity)such that either its ±v-
jumps do not all have the same orientation. Or, if these ±v-jumps have the same
orientation and if y(∞) is a critical point at infinity, we assume that its H1

0 -index
is non zero; if y(∞) is a critical point, we assume that it is not a minimum.

Then, S+ does not dominate y(∞)( there is no flow-line from the first to the
second one)

Proof. Would S+ dominate y(∞), then X = Wu(y(∞)) would be in the closure of
Wu(S+). Thus, X would be contained in Ā+. This contradicts the assumptions ¤

We thus see that the critical points at infinity of A+ which are dominated by A+

are very constrained. They are even more constrained and their existence seems
even less likely if we recall the following assumption which we have introduced in
[4]. In order to state this assumption,let us recall that given a contact form and a
vector-field of its kernel, we are thinking here of β and ξ, the kernel of the contact
form( represented then by v) rotates monotonically along the orbits of the vector-
field in the kernel (here ξ) see [1],Proposition 9 p24. We also recall that in [3],
we have devised a method, given a critical point at infinity y∞ and considering
its non degenerate ξ-pieces (those along which the H1

0 linearized problem is non
degenerate, see [3]), to redistribute the v-rotation along these ξ-pieces among them.
The process might create new critical points at infinity, but they will have at least
one more degenerate ξ-piece than y∞.

Hypothesis (A) then states that , when the number of non degenerate ξ-pieces
of y∞ tends to ∞, the amount of v-rotation (counted after redistribution in terms
of added H1

0 -index) tends to ∞.
The above statement is slightly different from the statement in [4], but the two

statements are actually equivalent.
If we assume Hypothesis (A), either a critical point at infinity has a finite number

of ξ-pieces equal to k0. If all of them are of H1
0 -index equal to zero(strict index

for characteristic pieces, see[3]), then their total index is finite since their index at
infinity cannot exceed 2k0 ([3]).

If the number of ξ-pieces of this critical point at infinity tends to infinity, then
using Hypothesis (A), the total v-rotation tends to infinity. We can expect after
redistribution that the critical point at infinity has some non zero H1

0 -index.
We therefore introduce the following hypothesis:
Hypothesis (C) Assume that y∞ is a critical point at infinity with all ±v-

jumps having the same orientation. As the Morse index of y∞ tends to infinity, its
H1

0 -index becomes non zero.
A stronger, but more convenient hypothesis states that:
Hypothesis (D) Every y∞ with all its ±v-jumps having the same orientation

is of non zero H1
0 -index.
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We will be providing the proofs of our statements below assuming that Hypoth-
esis (D) holds. Let us indicate here the modifications needed in order to derive
similar results under Hypothesis (C). Let us also indicate how we can get rid of
both hypotheses.

Under Hypothesis (D), we can flow backwards in time curves of A+ which are
in W̄u(T ), that is in the closure of the unstable manifold of a set T . Let us assume
that b does not keep a constant sign on all the curves of T . As we flow back a curve
of A+ ∩ W̄u(T ), either we go back to T , which means that eventually at some time
on the flow-line, we leave A+. Or we end up at a critical point(at infinity)y(∞)

dominated by T . We can scale our backwards deformation so that we stop the
process once x has entered a bit the set where b has at least two zeros.

If y(∞) has a sign change in its ±v-jumps and after flowing back, we find that our
curves are near y∞, then again we must have left A+ at some time. Otherwise, under
Hypothesis (D), if y(∞) is a critical point at infinity with all its ±v-jumps having the
same orientation, then y∞ is of non zero H1

0 -index. If we remove A+from our sets-it
is invariant by the decreasing flow- then the unstable manifold of y∞ is deprived
from a connected cone which is invariant by the decreasing flow. The remaining set
can be retracted by deformation onto a single flow-line which it contains. We can
arrange our deformation so that this flow-line does not go through y∞. We thus see
that under Hypothesis (D), Wu(T ) can be retracted by deformation onto the union
of a set of curves x such their v-component has at least two zeros and at most as
many zeros as the v-component of the curves of T with periodic orbits dominated
by T or critical points at infinity having at least two sign changes and at most as
many sign changes in their ±v-jumps as b for the curves of T .

Under Hypothesis (C), the argument is slightly modified:
The previous argument holds true outside of a finite dimensional CW-complex

L+built with the unstable manifolds of the critical points at infinity with H1
0 -index

zero and all ±v-jumps having the same orientation. L+ is entirely contained in A+.
Because L+ is finite dimensional, the homology and cohomology of index large

enough of the pair Cβ/S1, L+/S1 is the same than that of Cβ/S1. This holds true
also for the Fadell-Rabinowitz cohomological index. The pull-back of the S1-Chern
class taken at a large power will be zero in the cohomology of L+. If it is non zero
in the cohomology of Cβ/S1, then it can be traced back to the cohomology of the
pair (Cβ/S1, L+/S1).

Let V be an S1-equivariant neighborhood of L+. Because there is an equivariant
map from ∂V to L+, the Fadell-Rabinowitz index of ∂V is less than or equal to the
one of L+. For this reason, all the computations with the Chern classes elevated at
a high power can be carried in Cβ − V and they can be traced to the cohomology
of the pair

(
((Cβ − V) /S1, ∂V)

/S1 which is the same than the one of the pair
(Cβ/S1, L+/S1). The computations of section 2, Propositions 3 and 4 below will
be carried out in Cβ/S1 deprived of V/S1.

If we remove now Hypotheses (C) and (D), we can still work on the varia-
tional space Cβ − A+. We then introduce an S1-equivariant neighborhood V of
A+ and work with the cohomology and the pull-back of the Chern classes to
(Cβ−V)/S1 on one hand and with the homology of the pair

(
(Cβ − V)/S1, ∂V/S1

)
or

(
(Cβ − V)/S1

)
/∂V/S1).The same results would hold.

A basic question then remains: under minimal conditions, it is easy to see that
the Fadell-Rabinowitz cohomological index of Cβ is infinite, see[2], p268. Is the
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Fadell-Rabinowitz index of Cβ −A+ infinite?

We conclude section 1 with the following observation , which will be used in
section 3, about critical points at infinity x∞, of H1

0 -index i0 and index at infinity
i∞-see [3]- having a single non-degenerate ξ-piece and thus a single ±v-jump.
We claim that:

Lemma 1. α can be perturbed with a C2-bounded, C1-small perturbation near the
ξ-piece of x∞ so that the maximal number of zeros of b on Wu(x∞), i0 + γ equals
i0 + i∞ − 2 if i0 + i∞ is even, larger than or equal to 4.

Proof. Set i0 + i∞ = 2k. By the results of [3], we know that we can perturb α with
a C2-bounded, C1-small perturbation so that i0 achieves two other consecutive
values besides the original one. Since i0 is, in all cases, at most 2k, we can change
i0 so that it is equal to 2k − 2. Then i0 + γ̄ is also 2k − 2 ¤

As we proceed with the transmutation of x∞, we create pairs (z̄, z̄′) of false
critical points at infinity having one characteristic piece. We are changing the
H1

0 -index i0 of x∞ by lowering it. Using the results of [1], p134, we can claim:

Lemma 2. Neither z̄ nor z̄′ is of index 2k

Proof. Assume that the transmutation involves the collapse of x∞ and z̄. For x∞,
the index ”at infinity” i∞- see [3]- increases by 1 throughout the transmutation(s)
which it incurs. For a given transmutation of this type, z̄ and x∞ exchange their
indexes ”at infinity”-i.e their indexes in the Γ2s’s, these spaces are the spaces of
curves made of as many ξ-pieces and ±v-pieces as our critical points at infinity,
here s = 1, they are manifolds of dimension 2s, see [2]- through the collapse. Thus,
after the collapse, the index ”at infinity” of z̄ becomes i∞ while the index of x∞
changes from i∞ to i∞ + 1. Lemma 2 follows.

As a critical point at infinity, z̄ has to be taken with its strict H1
0 -unstable

manifold because it has a single (characteristic) ξ − piece. If the H1
0 -index of x∞

is i0, so is the full H1
0 -index of z̄: they collapse.

Hence, the total index of z̄ after the collapse is i0 − 1 + i∞ 6= 2k.
As for z̄′, its index ”at infinity” remains throughout the transmutation i∞+1±1,

because it was created in a canceling pair with z̄ which was of index ”at infinity”
i∞ + 1 before the collapse with x∞. Its strict H1

0 index is i0− 1 also. Therefore its
total index is

i0 − 1 + i∞ + 1± 1 = i0 + i∞ ± 1 6= 2k.

Our claim follows ¤

2. On the S1-Chern classes of Cβ/S1.
Consider a periodic orbit of index 2k + 1, x2k+1.
Its unstable manifold contains a part where b does not change sign. Under the

hypothesis stated above, this part does not dominate any critical point or critical
point at infinity besides the orbits of v at the bottom level. We can then flow back
all this part to x2k+1. This defines a global retraction by deformation which ends
into the closure of the subset of Wu(x2k+1) generated by the orthogonal of the first
eigenfunction (least eigenvalue) in the negative eigenspace of the second derivative
for x2k+1. We may view this subset as generated by a disk D2k in the unstable disk
of x2k+1.
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Assume now that ∂x2k+1 = 0. ∂ is here the boundary operator in our homol-
ogy see [3], [4]. This is equivalent to say that the usual boundary operator of
Morse theory-however extended to include the asymptotes- takes its values in crit-
ical points (which are necessarily critical points at infinity) of index 2k such that
the maximal number of zeros of b on their unstable manifold is at most 2k − 2.

For simplicity, we assume below that the usual boundary operator applied to
x2k+1 yields zero.

This assumption is equivalent, after adjusting the intersection operator-this does
not change the maximal number of zeros of b beyond 2k-to considering a general
cycle generated by a combination of periodic orbits of such index.

Let S2k−1 be the boundary of D2k. Let f be the classifying map for the S1-action
defined by (see [4]):

f(x) = b+

∫ 1

0

b− − b−
∫ 1

0

b+

where ẋ = aξ + bv. This yields the following commutative diagram:

C∗β
f−→ ES1

↓ ↓ p

C∗β/S1 f̃−→ BS1

where
C∗β = {x ∈ Cβ s.t b 6≡ b+ and b 6≡ −b−} ∩H2

and ES1 is viewed here as E − {0} where E is the infinite dimensional space
H1(S1,R)− {0}.

For x in S2k−1, f(x) has at most 2k zeros and at least 2 zeros. Then, pk ◦ f(x)

is non zero. pk is the orthogonal projector onto
k

Span
j=1

{cos2πjt, sin2πjt}.
p ◦ f(S2k−1) is easily deformed onto p ◦ pk ◦ f(S2k−1).
The image can be parametrized using sections to the S1 action on the equivariant

sphere pk◦f
|pk◦f |L2

(S2k−1). This gives rise to a cycle in BS1 which can be identified
as the generator of the rational homology of PCk−1, wk−2.

We then have the diagram:

S2k−1 = ∂D2k gk=pk◦f/|pk◦f |L2−−−−−−−−−−−−→ S2k−1

Id

y
yp

S2k−1 f̃−−−−→ PCk−1

gk = pk ◦ f/|pk◦f |L2 is of degree 1.
Let θ be the generator (via cup product) of the real cohomology of PC∞. Let us

consider the chain of ES1 equal to c1 = p ◦ f(D2k). Observe that D2k is transverse
to the S1-action (as well as S2k−1). We can adjust f so that p ◦ f(D2k)|∂S2k−1 =

p ◦
(

pk◦f
|pk◦f |L2

)
|∂S2k−1 . c1 is a cycle since f(S2k−1) is an equivariant sphere which

dimension collapses when we mod out by the S1-action.
Let us compute
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∫

c1

θk =
∫

p◦f(D2k)

θk =
∫

D2k

(p ◦ f)∗θk

Since f(D2k) has an equivariant S2k−1 as chain-boundary. Therefore,
∫

c1

θk = 1.

Thus ∫

D2k

(p ◦ f)∗θk = 1.

Let now y or y∞ be a critical point (at infinity) dominated by D2k. y or y∞ is
then of index 2k−1 at most. Assume that this index is 2k−1. For a periodic orbit
of index 2k − 1, the maximal number of zeros on its unstable manifols is 2k − 2.

There are strong restrictions on the critical points at infinity that D2k could
dominate . Indeed, adapting the proof of Compactness [4] to the present framework,
we can claim under Hypothesis (A) and any of the Hypotheses (B) of [4] that the
number of ±v-jumps of such a critical point at infinity y∞ is bounded depending
only on v and α, provided that the maximal number of zeros of b on its unstable
manifold is 2k. Thus, as k tends to infinity, the H1

0 -index of some of the ξ-pieces
tend to infinity.

Full compactness, which we conjecture ([4],[6]) would get rid of these y∞’s, but
our results do not allow us to claim this yet. However such a y∞ can be of one
of two types: either the basic ±v-jumps of y∞ bear a sign change. These y∞’s
together with their unstable manifolds build a set

L = {∪Wu(y∞); y∞of index 2k − 1 dominated by D2k,

maximal number of zeros of b on Wu(y∞) = 2k}
Or all the ±v-jumps of y∞ have the same orientation, e.g positive. Since the

H1
0 -index of some of the ξ-pieces of y∞ is non zero (Hypothesis (D) or k large),

the curves on Wu(y∞) directed along the positive eigenfunctions of the linearized
operator η̈ + a2ητ under the various Dirichlet boundary conditions corresponding
to its various ξ-pieces (at first order δb = η̈ + a2ηtau, see [4]) have also all their
±v-jumps positively oriented. They are in A+. In fact A+ ∩Wu(y∞) can then be
described as a cone of flow-lines around these curves.

The curves which belong to the closure of this set are contained in the unstable
manifolds of critical points of J in A+. Under Hypothesis (D), they are themselves
of non-zero H1

0 -index. Thus the above argument repeats: an entire C of flow-lines,
which includes these special critical points at infinity, is thereby defined. This cone
has no intersection with D2k and is contained into the set (with ε designating a
small positive number):

A2k−2 = ({x ∈ Cβsuch that b has at most 2k − 2 zeros or b ≡ 0} ∩ {x ∈ Wu(y(∞), y(∞)

s.t associated maximal number of zeros of b is at most 2k − 2}) ∪ {x ∈ Cβ ∩ Jε,

such that
∫ 1

0

b is close to zero and b has at most 2k zeros},
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Proposition 4, which we prove below, involves this cone. However, its claim is
a homological statement involving a pair of spaces, the smaller of both containing
the cone. We therefore, along the above arguments, will be excising C from this
pair of sets.

We first have the following straightforward result:

Proposition 3. Wu(D2k) defines a cycle in H2k(Cβ/S1, (A2k−2 ∪ L)/S1)

S1 acts effectively on Cβ so that the classifying map f extends in fact to Cβ :

Cβ
f−−−−→ ES1

y
yp

Cβ/S1
f̃−−−−→ BS1

and we can assume that f̃|∂D2k = f|D2k = pk◦f
|pk◦f |L2

.
We now claim:

Proposition 4. f̃∗θk is zero in H2k ((A2k−2 ∪ L)/S1 , Q) and defines therefore a
cocycle of H2k (Cβ/S1 , (A2k−2 ∪ L)/S1) which the image of a cocycle in H2k (Cβ/S1 , A2k−2/S1).
Furthermore, ∫

Wu(D2k)

f̃∗θk = 1.

This computation holds in the duality H2k/H2k for the pair of sets (Cβ/S1 , (A2k−2∪
L)/S1).

Proof. A2k−2 is made of two parts; one part is A∗2k−2 where b changes sign and
another part A+ where b does not change sign. A∗2k−2 is also made of two parts,
a part over which b has at most 2k − 2 zeros (and at least two) and another part,
near the bottom level, where b has at least two zeros and at most 2k zeros. We
denote in the sequel A ∗ S1 the equivariant set derived by S1 action on the set A.
We claim that

∆k = A2k−2 ∪
(
(Wu(D2k)−D2k) ∗ S1

) ∪ L

has a Fadell-Rabinowitz cohomological index [4] less than or equal to k−1. In fact,
we claim a much stronger statement, namely that there is an S1 equivariant map
from ∆k/(∆k/S1) into S2k−1/PCk−1 which is the restriction to ∆k/(∆k/S1) of the
classifying map f/f̃ for the S1-action on Cβ . This claim holds under Hypothesis
(D) and has to be slightly modified to obtain full generality by removing A+ from
all the sets considered.

It is important here to emphasize what part of the bottom level J0 to include in
∆k. We do not assert this claim if we include the periodic or recurrent orbits of v
in ∆k. However, the claim holds if we include the part of J0 made of curves drawn
onto v-pieces of orbits which are contractible and such that b has at most 2k zeros.

Let us assume that we have established this claim and let us proceed with the
proof of the proposition.

First, let us consider a chain c in S2k((A2k−2 ∪L)/S1) and compute the value of
f̃∗θk on it. We find:

f̃∗θk(c) = θk(f̃∗(c)) =
∫

f̃(c)

θk
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f̃(c) is of dimension 2k − 2, we thus find that these integrals are zero. The first
claim of the Proposition follows.

Let us now consider ∂D2k = S2k−1, the unstable sphere of x2k+1 and let us con-
sider S2k−1 ∗S1, the S1-invariant set derived from S2k−1 through time-translation.

Wu(S2k−1∗S1)∪A2k−2∪L retracts by deformation equivariantly onto A2k−2∪L
because every flow-line out of S2k−1 ∗ S1 ends either at y(∞) and near Wu(y(∞)

with y(∞) of index 2k − 1, this is contained in A2k−2; or such a flow-line ends near
the bottom level, then it is either in A+ or it is in A2k−2 because it is near the
contractible curves drawn on pieces of v-orbits and b has at most 2k zeros. We have
used here the assumption ∂x2k+1 = 0 or the more general form of this assumption.

Since ∆k = Wu(S2k−1 ∗ S1) ∪ A2k−2 ∪ L retracts by deformation equivariantly
onto A2k−2 ∪ L, f̃∗θk ∈ H2k(Cβ/S1,∆k).

Wu(D2k) is a cycle in the chain group S2k(Cβ/S1,∆k) which is as well repre-
sented by D2k.

Let us assume, arguing by contradiction, that D2k is homologically zero. Then

D2k = ∂c + a,

where a is a chain valued into ∆k with boundary ∂a = S2k−1. Using our claim
above, f̃(a) is contained in PCk−1. Accordingly,

f̃∗θk(a) = θk(f̃∗(a)) =
∫

f̃(a)

θk = 0

since f̃(a) is of dimension 2k − 2 at most. On the other hand, since θk is closed,

f̃∗(θk)(∂c) = θk(f̃∗(∂c)) = θk(∂f̃∗(c)) =
∫

∂f̃(c)

θk = 0.

Thus,
∫

D2k f̃∗θk = 0, a contradiction.
Let us now prove our claim about ∆k and its classifying map:
∆k is made of four parts: a part contained in Wu(S2k−1) where b has at least two

zeros and at most 2k zeros, A∗2k−2, A+, and the critical points (at infinity) y, y∞(the
maximal number of zeros of b on their unstable manifolds is at most 2k − 2, see
above). A+ cannot, under Hypothesis (D), dominate any critical point (at infinity).
We flow back the part of A+ which is contained in Wu(S2k−1) until we either enter
into the set of curves with a v-component b having at least two zeros or we reach
a neighborhood of a critical point (at infinity) which is necessarily dominated by
x2k+1 and cannot be x2k+1 by construction of D2k. We flow back as well along the
same deformation all the curves of A+ which all belong to the unstable manifold
of a critical point (at infinity) with maximal number of zeros 2k − 2 or less. This
defines an equivariant retraction by deformation on a new set ∆1

k.
On the part of ∆1

k where b has 2k zeros, the classifying map can be viewed as pro-
vided by gk = pk◦f

|pk◦f |L2
, where pk is the L2-orthogonal projection onto Span{cos 2πix, sin

2πix, i = 1, .., k.}. This map becomes gk−1 = pk−1◦f
|pk−1◦f |L2

as we move to the part of
∆1

2k where b has at least two zeros and at most 2k − 2 zeros.
In a neighborhood of the critical points(at infinity), the classifying map is valued

into S1.
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We need to glue these two maps, this is usually completed by defining a product
map over the intersection of the two domains into the product space Ck − {0} ×
C − {0}. This would lead us into Ck+1 − {0}, one dimension too much. We thus
need to be able to replace the map gk by gk−1. Observe that the critical points (at
infinity) which are involved here are of two types: either, the maximal number of
zeros of b on their unstable manifold is at most 2k − 2; or the basic ±v-jumps of
these critical points at infinity bear a sign-change. We have removed the part in
A+. Thus, the classifying map can be reduced to gk−1 outside a neighborhood of
the critical points (at infinity). This extends by continuity to a neighborhood of
this set. We extend this map to a neighborhood of the critical points at infinity
using the product map described above. We obtain in this way a map valued into
Ck/PCk−1 which we denote h̄/h. h̄ is defined on a neighborhood of the set formed
of the union of the curves x such that b has at least two zeros and at most 2k − 2
zeros with a neighborhood of the critical points (at infinity) discussed above. On
the boundary of this neighborhood (among the curves such that b has at most 2k
zeros), gk is another classifying map. We need to glue them because gk is known to
extend while we do not know the same fact for h̄. Observe that gk and h̄ coincide
outside a neighborhood of each critical point (at infinity) y(∞) (which we know to
be of index 2k−1 or less and with a maximal number of zeros equal to 2k or less in
its unstable manifold). If y(∞) is a genuine critical point at infinity, then either its
±v-jumps do not have the same orientation, gk works throughout, i.e we can take h̄
to be gk also near y∞. Or all the ±v-jumps of y∞ have the same orientation. If the
H1

0 -index of y∞ is non zero, then y∞ does not hinder the downwards deformation
after removal of the functions of A+ and of the cone C defined above, before stating
Proposition 3. We do not have to consider such y∞’s. Hypothesis (D) rules out
the other critical points at infinity. We are left with the periodic orbits of index
2k − 1, thus after the removal of the x’s of A+ with a disc D2k−2 and the set it
forms under S1 action, S1 ∗D2k−2. h̄ and gk coincide on S1 ∗∂D2k−2 = S1 ∗S2k−3.
h̄ extends to S1 ∗D2k−2. Do does gk if we perturb a bit D2k−2 so that it does not
contain the periodic orbit anymore. The two maps are S1-equivariant, in order to
glue them we just need to show that their restriction to {1}×D2k−2 are homotopic
as maps valued into S2k−1 relative to their common boundary value. Using a
dimension argument, this conclusion is obvious and the claim follows. The proof of
Proposition 4 is complete

Let Ã2k−2 be the set of curves {x ∈ Cβ such that b has at most 2k − 2 zeros or
b ≡ 0, number of zeros of b on Wu(periodic orbit) at most equal to 2k − 2}. Using
the variational flow of [2], Ã2k−2∪L∪J0 retracts by deformation onto A2k−2∪L∪J0.
Using excision, we derive:

Proposition 5. D2k defines a non zero cycle in H2k(Cβ ∪ J0, Ã2k−2 ∪ L ∪ J0),
”dual” to f̃∗θk

Observation: Let S1 ∗ x2k and S1 ∗ D2k be a critical circle of strict index 2k
and its unstable manifold. We can try to repeat the argument. However, now,
after removing b ≡ b+ or b ≡ b−, we find S1 ∗ S2k−2 which we map using f into
Span{cos 2πjt, cos 2πjt, j = 1, · · · , j = k} − {0}. We may consider that f|S1∗S2k−2

is valued into the equivariant unit sphere S2k−1. However, f can be checked to be of
zero degree now. The argument collapses. Also, the quotient is now (D2k−1, S2k−2)
which is not of even dimension. Thus f∗θk is achieved dually by x2k+1 and not by
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S1 ∗ x2k.

3. To what extent is the converse true?.
In the previous two sections, we have studied and characterized the homology

class of Cβ/S1 which is associated to a periodic orbit of odd Morse index. This
statement falls short from a variational characterization of some periodic orbits
since we have to start with a cycle associated to an odd index in the homology
which we have defined in [3], [4].

We explore now how much the converse holds. The approach will lead us to define
some objects and sets closely related to the Fredholm problem in the variational
problem (J,Cβ).

We need for our discussion to introduce two spaces which are ”bad” because
their topology is not separated in general and also a (almost) symmetrized form of
our contact form α. The discussion can then start.

The first ”bad” space is the space of orbits M/v where points on the same v-orbits
are identified. This is of course in general a space where points are not separated.
The second space is even worst than this space since it is the space of loops Λ(M/v)
of M/v. There are natural projections M → M/v and Cβ → Λ(M/v) although we
are bypassing here regularity questions. The second projection is S1-equivariant so
that the classifying map for the S1-action on Cβ factorizes through Λ(M/v), f∗θk

which we discussed above may be viewed as an image of a cocycle of H2k(Λ(M/v).
On another hand, let us consider the contact form α. Let ψ be the map defined

through v-transport which associates to every given point x the next coincidence
point x1 (i.e α rotates 2π from x to x1 along the v-orbit through x, see [1],p25
for more details). Let us assume for sake of simplicity that every x of M has
one coincidence point, this issue is discussed in [6]. Then every x have infinitely
many positive and negative iterated coincidence point. Every iterated coincidence
point of order i defines a function λi(x) which is the collinearity coefficient of the
transported α from x1 to x onto α. Picking up a large number N , averaging the
value of a collinearity coefficient over λ1, λN , we can build a new form α̃ which is
almost symmetric, at least if we compare through v -transport the value of the form
between coincidence points corresponding to orders od iterations which are o(N).
We are assuming here a slow growth of the λ′is with i.

For the sake of simplicity, let us assume that we actually have a ”symmetric” α̃
i.e ψ∗α̃ = α.

Considering then a ”tangent ” vector z to M/v, we can lift it to M so that
it coincides in direction, transversally to v, with ξ̃ which is the Reeb vector-field
of α̃. Because of the symmetry, we derive in fact a countable number of lifting
positions in M . However, denoting z̄ one of the lifts, α̃(z̄) is independent of the
lifting position. Thus, J can be viewed as a functional J̃ defined on Λ(M/v).

We can look for critical points of J̃ on Λ(M/v), all of this is completed in a
generalized sense for the moment, we will make sense of this approach later. We
can look in particular for critical points which correspond to changes in the Fadell-
Rabinowitz cohomological index of the level sets of J̃ . We would expect those to
lift into periodic orbits.

This conclusion is actually not so obvious. Indeed, let us compare at the crossing
of a critical value, which we assume to correspond to a single critical point, the
change of topology in the level sets of J with the change of topology in the level
sets of J̃ . Let c be the critical value, x̄ be the critical point, Dl be its unstable disk.
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Then, the pair (J̃c+ε/S1, J̃c−ε/S1) is homologically equivalent to (Dl, ∂Dl) which
makes perfect sense.

We would like to understand the pair (Jc+ε, Jc−ε). This pair is more complicated
to understand because x̄ could first lift into a curve which is not closed if it is of
non zero ”Maslov” index, that is what we would like to rule out with the particular
change of topology sought, related to the index γFR. Furthermore, above x̄, in Cβ ,
there are other curves, other critical points at infinity containing ±v-jumps between
conjugate points i.e coincidence points such that λi = 1.

Would the problem be reduced to the non zero ”Maslov” index and the lift
contain a single curve, we could rule it out using Proposition 5 above. But in
fact there are several lifts, a continuum of them in our framework, because of the
symmetry and there are on top of that all the critical points at infinity. Is it still
the Chern class which we are obtaining above?

In order to understand this issue, let us describe the critical set at infinity above
x̄: let x be a smooth lift of x̄, x may not be closed if it is of non zero Maslov index. Its
edges are then conjugate (in the present symmetric framework, coincidence)points.
Let i be an index which is o(N). ψi(x) is also a lift of x̄ and, in a generalized sense,
so are all the curves y which are partially drawn on a ψi(x), then on a ψj(x) etc,
the partial trajectories being completed along ξ̃, until the full interval of time [0, 1]
is completed. The transitions from ψi(x) to ψj(x) are completed along ±v-jumps
between conjugate points. This is a huge critical set K which has transversally the
same Morse index (this statement is not obvious, see [2],[3]).

Thus, H∗(Jc+ε/S1, Jc−ε/S1) equals H∗(K × (Dl, ∂Dl)). Thus, we can reformu-
late our search as follows: What is the topology of K?

In order to answer this question, we need to extend a bit K as follows: K is built
out of pieces of the ψj(x) which are connected by ±v-jumps. The pieces patch to
cover x̄.

If we break a little bit the symmetry, we introduce characteristic surfaces Σi

which are defined by the equation λi(x) = 1. We have described in [3],p9 and
Chapter IV how, given a piece of ξ-orbit which runs into {x/λi(x) > 1}, we can
then create an ”oscillation” along v at one of the points of this piece of ξ-orbit
in order to reach the coincidence point of order i, then open up this ”oscillation”
at this coincidence point, insert a piece of ξ orbit, the whole curve closes and J
decreases, see [3] pp 38-40 and 158-161, also [2] pp 236-244.This is due to the lack
of Fredholm behavior of this variational problem.

Accordingly, above x̄, after this perturbation which breaks the symmetry is com-
pleted, we have an optimal lift x̃. Indeed, above each point of x̄, there is (under
some conditions about the behavior of the λi’s as i tends to ∞) an optimal i. x̄ lifts
near this point along this determination until the lift hits a characteristic surface
and we have to switch the determination. The curve x̃ obtained in this way is a
fixed point for a map Φ, easy to define as it runs along ξ from a characteristic sur-
face to the next one (on the ”right” side), completing ±v-jumps between conjugate
points as the curve hits each hypersurface. This fixed point can be assumed to be
non degenerate.

Assume that v does not define an S1-bundle over M/v. Then, starting from a
point of K, we cannot reach a corresponding point of x̃ using a +/-oscillation along
v as well as a -/+ one. One of these oscillations would not work. The deformation
onto x̃ introduced above is thus well defined; the set on which it is defined is
a slight extension of the set K; this extension K̃ allows for the building up of
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oscillations along v. The related downwards deformation after the introduction of
the perturbation (K̃ can be kept unchanged through the perturbation since x̄ can
be assumed to be non degenerate) deforms all of K̃ over x̃. Some work [6] shows
that the deformation is compatible with the (small) unstable manifold Dl.

Thus, assuming that v does not define an S1-bundle over M/v and that no
periodic orbit of v passes through a point of x̃, we expect the following result to
hold:

Proposition 6. H∗(Jc+ε/S1, Jc−ε/S1) = H∗(Dl, ∂Dl) = H∗(J̃c+ε/S1, J̃c−ε/S1)

Observation: in the case of S1-bundles generated by v, it is natural to expect a
slightly modified result, namely that K̃ will deform onto a circle S1 rather than on
the single point defined by x̃.

We now ”prove”(we have indicated that some of our spaces are ”bad”) that in
this unchanged framework(symmetry,exclusion of S1-bundles), any change in the
Fadell-Rabinowitz index of the level sets of J/J̃ is achieved by curves x̄ of Maslov
index zero.

Let r be the projection map from Cβ/S1 to Λ(M/v)/S1 and let g̃/g be the
classifying map for the S1-action over Λ(M/v). θ denotes as above the S1-Chern
class.

We assume in the sequel that ωk = (r ◦ g)∗(θk) is non zero in H2k(Jc+ε/S1) and
that it is zero in H2k(Jc−ε/S1). Thus ωk generates H2k(Jc+ε/S1, Jc−ε/S1).

We are assuming that we have symmetry. Arguing by contradiction, let x∞2k be
an associated critical point at infinity with exactly one ±v-jump. Using ψj , we can
generate the other ones (having exactly one ±v-jump).

We can use Lemma 1 above and derive, after averaging, a symmetric α such that
the maximal number of zeros of b on the unstable manifold of x∞2k and the like is
2k − 2 at most. This unstable manifold may be represented using (2k − 2)∗’s at
various locations. Near x∞2k, one of them corresponds to the large ±v-jump of x∞2k.
Obviously, in this representation, the location of the ±v-jumps even near x∞2k can
change to account for two additional directions. We then claim:

Lemma 3. ∂x∞2k is valued in A2k−4 ∪ {periodic orbits or critical points at infinity
of index 2k − 2 at most and their unstable manifolds} ∪ C ∪ D where C is con-
tained in {x ∈ Jε,

∫ 1

0
b is close to zero and b has at most 2k − 2 zeros} and D =

{∪Wu(x∞2k−1), x
∞
2k−1 having at most one characteristic ξ-piece of large H1

0 -index
(≥ m0,m0 a fixed integer) ; maximal number of zeros of b on Wu(x∞2k−1) = 2k − 2}

Proof. x∞2k cannot dominate a periodic orbit of index 2k−1 because by [3], Lemma
3 p80, the maximal number of zeros on its unstable manifold should be at least 2k

Considering a critical point at infinity (to pursue this argument, we can introduce
a small perturbation destroying the symmetry) of index 2k− 1, either the maximal
number of zeros on its unstable manifold is 2k− 2 and this critical point at infinity
contains two characteristic pieces of large enough H1

0 index. Invoking as above
a natural extension of the arguments of Compactness [4], we can infer that the
intersection number of x∞2k with this critical point at infinity is zero. Or this critical
point at infinity contains no characteristic piece of H1

0 -index ≥ m0 . Using then
Hypothesis (A) of [4], we can change the maximal number of zeros of b on its
unstable manifold by 2. The only case left is the case when x∞2k−1 has a single
characteristic piece of large enough index. We have conjectured in [4] that we could
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get rid of such curves in the framework of flow-lines originating at periodic orbits.
This conjecture extends here to the x∞2k−1’s dominated by such x∞2k’s, as in Lemma
3. Short of assuming this conjecture, we have to add the set D in the statement of
Lemma 3.

L2k−2 designates in the sequel a stratified space of dimension 2k − 2 at most.
Let us now find a converse to the characterisation of the previous section. Indeed,

instead of working with the level sets of J , we could work with the cohomology group
of order 2k of the pair (Jd/S1, (Jd∩(A2k−2∪L2k−2)/S1). As the Fadell-Rabinowitz
index of the set Jd becomes 2k, the cocycle θk is non zero, after pull-back, in the
cohomology of Jd/S1, but it is zero in the cohomology of (Jd∩(A2k−2∪L2k−2))/S1.
Thus it can be traced back to H2k(Jd/S1, (Jd ∩ (A2k−2 ∪ L2k−2)/S1).

Since A2k−2 is invariant by our decreasing flow, the cohomology of order 2k of
the pair (L2k−2 does not count) is non zero at a critical(at infinity) level c such
that the Fadell-Rabinowitz cohomological index of the level sets increases.

In the framework defined above, which excludes S1-bundles, the change of topol-
ogy in the level sets of J can be expressed using a single x∞ and its unstable man-
ifold. The optimal x̃∞ obtained using the characteristic surfaces Σi is the natural
choice for x∞, but any x∞ of the family will in fact work.

We can choose among all possible choices an x∞ such that the number of zeros
of b on its unstable manifold is minimal. Usually, the number of ±v-jumps of such
an x∞ has to be minimal since in this symmetric framework, the H1

0 -decreasing
variations adjust to the maps ψi: if we have a decreasing direction z along x∞ and
if we consider a curve y∞ obtained after transporting a piece of ξ-curve of x∞ along
ψi, then the direction z′ obtained by pushing z through ψi over the same time span
is also decreasing for y∞ now.

The number of zeros of b for the curve ”y∞+εz′” can only grow when compared
to the number of zeros of b for ”x∞ + εz”.

We thus can choose x∞ to be the critical point ( at infinity) in the family having
the least number of ±v-jumps, one at most. While the existence of x∞ is clear
once the symmetry is broken, its uniqueness is less clear as well as the possibility
of reaching x∞ without introducing new zeros for b.

We will not try to complete a deformation in the case of zero Maslov index, in
fact we think that it might be wrong in this case. But in the case of nonzero Maslov
index, the curves having a single ±v-jump (without base point) form a line. It is
on this line that the maximal number of zeros of b is minimal i.e starting from any
curve of K, we can reach a curve on this line without ever increasing the maximal
number of zeros of b on the unstable manifolds of the critical curves through which
we deform. Thinking of this line now, we break the symmetry and we create a
unique global minimum which also achieves the minimum in the maximal number
of zeros of b. Up to cancelations of local maxima and minima of J along this line, we
can deform all of them onto the global minimum. The only worry which we should
have is with the maximal number of zeros of b which might jump by 2 along the
deformation. But this can be adjusted using the techniques of [3] p81: we have a
piece of ξ-orbit which spans the entire piece of ξ-orbit of the global minimum x̃ and
the entire piece of ξ-orbit of ψ(x̃). On each piece of ξ-orbit, we have adjusted the
v-rotation along ξ, it spans 2k− 2 nodes. We then can turn the v-rotation to occur
at constant speed along ξ over the two pieces of ξ-orbits together. This is where
we use the techniques of [3] p81. Using this determination to build a symmetric
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contact form around the line, we now can state that all along this line of curves of
non zero Maslov index, the maximal number of zeros of b on the unstable manifolds
is 2k − 2. Breaking the symmetry and arguing as above, we conclude that:

Proposition 7. . Let c be the critical level of x̃ which we assume to be of non zero
Maslov index.We assume c to be isolated. H2k(Jc, Jc ∩ (A2k−2 ∪ L2k−2)) is then
zero.

Corollary 1. A level c at which the Fadell-Rabinowitz index of the level sets Jd

changes corresponds in the symmetric framework (excluding S1-bundles generated
by v) to critical curves of Maslov index zero (hence to periodic orbits).

Observation 1. We expect a similar result to hold for S1-bundles.

Observation 2. The homology of [3], [4] is invariant, under suitable hypotheses,
under deformation of the contact form. Thus, the above result derived in the
symmetric case, should in fact be a general result on the homology (given the
vector-field v).

Let us point the following byproduct result which we can derive from our argu-
ment above:

Lemma 4. Assuming the same hypotheses than in Proposition 7 and assuming that
we can get rid of the set D in the statement of Lemma 3, H∗(Jc+ε, Jc+ε∩A2k−4) =
H∗(Jc+ε, Jc−ε ∩A2k−4) for ε positive small enough.

Proof. The maximal number of zeros on the unstable manifold of x̃ is exactly 2k−2.
Therefore, Jc+ε ∩A2k−4 can be moved down, past the level c

We thus have concluded in this paper that at a crossing of a critical point at
infinity of index 2k and of a non zero Maslov index, the cohomology of the pair
(Jd/S1, (Jd ∩ (A2k−2 ∪ L2k−2)/S1) could not change since, by Lemma 1, we can
always choose α in the vicinity of x∞2k so that the maximal number of zeros on
its unstable manifold is 2k − 2. We thus have developed a characterization of the
difference of topology related to the changes in the S1-Fadell-Rabinowitz index of
the level sets of the functional J : these should all be related to the existence of
periodic orbits of odd index, at least in the ”symmetric” case, probably in a more
general framework. The description of our results is now complete.
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