ANALYSE MATHÉMATIQUE. — Une théorie des points critiques à l'infini pour l'équation de Yamabe et le problème de Kazdan-Warner. Note de Abbas Bahri et Jean-Michel Coron, présentée par Jacques-Louis Lions.

On considère dans cette Note un ouvert Ω de S³, K une fonction positive sur Ω , et l'équation dans $\Omega - 8\Delta u + 6u = K u^5$, u > 0 dans Ω , u = 0 sur $\partial \Omega$ (pas de condition si $\Omega = S^3$). On suppose que soit K est une constante (équation de Yamabe) et $\Omega \neq S^3$, soit $\Omega = S^3$ et K est une fonction positive. Le problème variationnel est non compact. On analyse dans cette Note les points critiques à l'infini qui lui sont associés. On en déduit des conditions suffisantes sur K pour qu'elle soit courbure scalaire d'une métrique confirme à la métrique

MATHEMATICAL ANALYSIS. — Critical points at infinity in the Yamabe equation and the Kazdan-

Let Ω be an open set of S^3 and K be a positive function on Ω . We consider the equation $-8\Delta u + 6u = Ku^5$ in Ω , u>0 in Ω , u=0 on $\partial\Omega$ (no condition if $\Omega=S^3$). We assume either K is constant and $\Omega\neq S^3$ or $\Omega=S^3$. The variational problem is not compact. We analyze the critical points at infinity of this functional. We give sufficient conditions on K to be the scalar curvature of a metric conformally equivalent to the standard

I. Introduction. — Soient $S^3 = \{x \in \mathbb{R}^4 | |x| = 1\}$, c la métrique canonique sur S^3 , Ω un ouvert régulier de S^3 (éventuellement $\Omega = S^3$) et K une fonction positive et de classe \mathbb{C}^2 sur $\bar{\Omega}$. On cherche u de $\bar{\Omega}$ dans \mathbb{R} tel que :

(1)
$$-8\Delta u + R u = K(x) u^5, \quad u > 0 \quad \text{dans } \Omega,$$

(2)
$$u=0 \quad \text{sur } \partial\Omega \quad (\text{si } \Omega \neq S^3).$$

Dans (1) Δ est le laplacien de (S³, c) et R est la courbure scalaire de (S³, c) soit 6. Quand Ω est différent de S^3 , on supposera que K est une fonction constante.

Dans le cas $\Omega = S^3$ le problème (1) a l'interprétation géométrique suivante : existe-t-il une métrique g sur S^3 conforme à c telle que la courbure scalaire de $(S^3,\,g)$ soit K(chercher g sous la forme $g = u^{4/(n-2)}c$)? Des obstructions dues à Kazdan-Warner [1] et à Bourguignon-Ezin [2] sont connues pour ce problème (problème de Kazdan-Warner).

Pour $u \in H^1(\Omega)$ on pose $||u||_{\Omega}^2 = \int_{\Omega} (8 |\nabla u|^2 + R u^2) dv$. Soit $\Sigma = \{ u \in H_0^1(\Omega) | ||u|| = 1 \}$. On pose:

$$I(u) = \left(\int_{\Omega} K(x) u^6 dv\right)^{-1/2} \quad \text{pour} \quad u \in \Sigma \quad \text{et} \quad \Sigma^+ = \{u \in \Sigma \mid u \ge 0\}.$$

Il est facile de voir que inf I n'est pas atteint si $\Omega \! = \! S^3$ et K n'est pas constante ou si $\Omega \neq S^3$. De plus un point critique de I qui est une fonction positive sur Ω donne une

solution de (1)-(2).

Soit d(.,.) la distance géodésique sur (S^3, c) et soit, pour $a \in S^3$ et $\lambda > 0$, $\delta(a, \lambda)$ la fonction sur S3:

$$\delta(a, \lambda)(x) = c \left[\frac{\lambda}{\lambda^2 + 1 - (\lambda^2 - 1)\cos d(a, x)} \right]^{1/2},$$

où c est tel que $\|\delta(a, \lambda)\| = 1$ (c est en fait indépendant de λ et a).

0249-6321/85/03000513 \$ 2.00 © Académie des Sciences

Soit, pour $\varepsilon>0$ et un entier p, $V(p,\varepsilon)$ l'ensemble des fonctions de Σ^+ telles que $\exists a_1,\ldots,a_i,\ldots,a_p\in\Omega,\,\exists\,\lambda_1,\ldots,\,\lambda_i,\ldots,\,\lambda_p\in]0,\,+\infty[$ tels que :

$$\left\| u - \frac{1}{\sqrt{S}} \sum_{i=1}^{p} \frac{1}{K(a_i)^{1/4}} \delta(a_i, \lambda_i) \right\|_{\Omega} \leq \varepsilon \quad \text{avec} \quad S = \sum_{i=1}^{p} \frac{1}{K(a_i)^{1/2}},$$

$$\lambda_i \geq \varepsilon^{-1}, \quad \forall i, \quad \frac{\lambda_i}{\lambda_j} + \frac{\lambda_j}{\lambda_i} + (d(a_i, a_j))^2 \lambda_i \lambda_j \geq \varepsilon^{-1}, \quad \forall i \neq j$$
et, si $\partial \Omega \neq \emptyset$, $d(a_i, \partial \Omega) \lambda_i \geq \varepsilon^{-1}$.

On a:

Proposition 1. — Soit u_n une suite de Σ^+ telle que $I'(u_n) \to 0$ dans $H^{-1}(\Omega)$, $u_n \to 0$ dans $H^0_0(\Omega)$ (faiblement) et $(I(u_n))_n$ est une suite bornée. Alors, quitte à extraire une sous-suite, il existe un entier p et une suite $(\varepsilon_n)_n$ avec $\varepsilon_n \to 0$ quand $n \to +\infty$ tels que:

$$u_n \in V(p, \varepsilon_n), \forall n.$$

Le premier travail relatif à cette proposition est dû à Sacks-Uhlenbeck [3]. La démonstration de la proposition 1 est contenue dans les méthodes de [4] à [8].

Notre méthode pour trouver des points critiques de I consiste pour le problème de la condition de Palais-Smale à suivre les lignes du gradient de I au lieu de considérer les suites $(u_n)_n$ telles que I' $(u_n) \to 0$ et $I(u_n) \le c$. Cette méthode a été introduite précédemment dans [9] pour la conjecture de Weinstein. On verra apparaître des phénomènes différents de ceux de la proposition 1 le long des lignes du gradient de I.

Pour $u \in H_0^1(\Omega)$ on convient de prolonger u par 0 à l'extérieur de Ω . On a :

Proposition 2. — Soit p un entier; alors, pour $\varepsilon > 0$ assez petit et pour u dans $V(p,\varepsilon)$ le problème :

Minimiser $\left\| u - \sum_{i=1}^{p} \alpha_i \delta(a_i, \lambda_i) \right\|_{S^3}$ avec $(\alpha_1, \ldots, \alpha_p) \in \mathbb{R}^p$, $(a_1, \ldots, a_p) \in \Omega^p$ et $(\lambda_1, \ldots, \lambda_p) \in]0, +\infty[^p \text{ a une solution unique.} \blacksquare$

On notera $a_i(u)$, $\lambda_i(u)$, $\alpha_i(u)$ la solution du problème de minimisation.

II. $\Omega \neq S^3$. — Notons d'abord que, quitte à remplacer Ω par sa projection stéréographique sur \mathbb{R}^3 , le problème (1)-(2) est équivalent à la recherche de u tel que :

$$-\Delta u = u^5$$
 dans Ω , $u > 0$ dans Ω avec $u = 0$ sur $\partial \Omega$,

où maintenant Ω est un ouvert borné régulier de $\mathbb{R}^3.$ On note maintenant :

$$||u|| = \left(\int |\nabla u|^2 dx\right)^{1/2}, \qquad \Sigma = \{u \in H_0^1(\Omega) | ||u|| = 1\},$$

$$\Sigma^+ = \{u \in \Sigma | u \ge 0\}, \qquad I(u) = \left(\int_{\Omega} u^6 dx\right)^{-1/2}$$

et:

$$\delta(a, \lambda)(x) = c \left\{ \frac{\lambda}{1 + \lambda^2 |x - a|^2} \right\}^{1/2} \quad \text{avec } c \quad \text{tel que } \|\delta(a, \lambda)\| = 1.$$

Pour $x \in \Omega$ on définit la fonction $y \to H(x, y)$ sur Ω par :

$$\Delta_y H(x, y) = 0$$
 dans Ω ,
 $H(x, y) = |x - y|^{-1}$ sur $\partial \Omega$.

Pour $a = (a_1, \ldots, a_p) \in \Omega^p$ on définit la matrice $M(a) \in \mathbb{R}^{p^2}$ par :

$$M_{ij}(a) = H(a_i, a_j) - |a_i - a_j|^{-1}$$
 si $i \neq j$, $M_{ii}(a) = H(a_i, a_i)$.

On convient que $M_{ij}(a) = -\infty$ si $i \neq j$ et $a_i = a_j$. On notera $\rho(a)$ la plus petite valeur propre de la matrice symétrique M(a) en convenant que $\rho(a) = -\infty$ si, pour un couple (i, j) avec $i \neq j$, on a $a_i = a_j$.

On suit maintenant une ligne de gradient de I dans Σ^+ :

$$\frac{du}{ds} = -I'(u); \qquad u(0) \in \Sigma^+.$$

On suppose qu'il existe $p \in \mathbb{N}$ et $\varepsilon(s) \to 0$ quand $s \to +\infty$ tels que $u(s) \in V(p, \varepsilon(s))$ pour s assez grand.

On note (voir proposition 2) $\lambda_i(s) = \lambda_i(u(s)); \ a_i(s) = a_i(u(s)); \ \rho(s) = \rho(a(s)).$

On appelle points critiques à l'infini ces orbites du flot qui restent dans un des $V(p, \varepsilon(s))$ pour une certaine fonction $\varepsilon(s)$ [$\varepsilon(s) \to 0$ quand $s \to +\infty$]. On a le:

 $\frac{\text{Théorème 1.} - On \ suppose \ que \ \forall i \in [1, p], \ \overline{\lim} \ d(a_i(s), \partial\Omega) > 0. \ On \ a \ alors : \\ \frac{\overline{\lim}}{s \to +\infty} \rho(s) \geqq 0. \ Si \ \overline{\lim}_{s \to +\infty} \rho(s) > 0, \ alors \ \rho(s) \ et \ a(s) \ convergent \ quand \ s \to +\infty \ et :$

$$\lambda_i(s) \sim C_i s; C_i > 0.$$

Le théorème suivant affine le théorème 1 en donnant au voisinage des points critiques à l'infini la dynamique du flot :

Théorème 2. — Pour tout $\delta > 0$, il existe un $\varepsilon_0 > 0$ et un $s_0 > 0$ tels que, si $u(s) \in V(p, \varepsilon_0)$ pour $0 \le s \le s_0$ et $d(a_i(s), \partial\Omega) \ge \delta$ pour $0 \le s \le s_0$, alors pour tout $\overline{s} \ge s_0$ tel que u(s) reste dans $V(p, \varepsilon_0)$ pour $s \in [0, \overline{s}]$, on a :

$$\begin{split} \frac{\dot{\lambda}_{i}}{\lambda_{i}\sqrt{\lambda_{i}}}(\overline{s}) &= \frac{\overline{\alpha}\operatorname{I}(u)^{1/2}}{2\lambda_{i}\alpha_{i}} \left[\operatorname{I}(u)^{2} \frac{\alpha_{i}^{5}\operatorname{H}(a_{i},\ a_{i})}{\sqrt{\lambda_{i}}} - \operatorname{I}(u)^{2} \left(\sum_{j\neq i} \frac{1}{\sqrt{\lambda_{j}}} \frac{\alpha_{i}^{4}\alpha_{j} + \alpha_{j}^{5}}{\left|a_{i} - a_{j}\right|} - \alpha_{i}^{5}\operatorname{H}(a_{i},\ a_{j})\right) \\ &+ \sum_{j\neq i} \frac{\alpha_{j}}{\sqrt{\lambda_{j}}\left|a_{i} - a_{j}\right|} \right] + \frac{1}{\sqrt{\lambda_{i}}}o\left(\sum\frac{1}{\lambda_{k}}\right), \\ &|\dot{a}_{i}|(\overline{s}) \leq \frac{C}{\lambda_{i}} \left(\sum\frac{1}{\lambda_{k}}\right), \quad \overline{\alpha}, \ Cet\ \overline{C}\ sont\ des\ constantes. \\ &\dot{\alpha}_{i}(\overline{s}) = -\overline{C}\operatorname{I}(u)^{1/2}\alpha_{i} \left(1 - \alpha_{i}^{4}\operatorname{I}(u)^{2}\int_{\mathbb{R}^{3}}\delta^{6}\right) + O\left(\sum\frac{1}{\lambda_{k}}\right), \\ &\left(\int_{\mathbb{R}^{n}} |\nabla v|^{2}\ dx\right)(\overline{s}) \leq K\sum\lambda_{i}^{-1} \qquad où \quad v = u - \sum_{i=1}^{p}\alpha_{i}\delta\left(a_{i},\ \lambda_{i}\right). \quad \blacksquare \end{split}$$

Des formules précédentes, on déduit la variété instable des points critiques à l'infini donnés par le théorème 1 en faisant varier les α_i autour de $\alpha_i = 1/\sqrt{p}$ sous la contrainte $\sum_{i=1}^{p} \alpha_i^2 = 1$. On obtient ainsi tout « l'ensemble invariant du flot à l'infini » (voir [10]).

Remarque 1. — On peut aussi montrer avec les méthodes ci-dessus et Schoen [11] que, sur une variété riemannienne M compacte de dimension 3, la condition de Palais-Smale est satisfaite le long des lignes d'un pseudo-gradient de I si K est une constante, $\Omega = M$ et R est la courbure scalaire de M.

III. $\Omega = S^3$. Problème de Kazdan-Warner. — On considère le problème sur S^3 :

(1)
$$\begin{cases}
-8 \Delta u + R u = K(x) u^5, \\
u > 0.
\end{cases}$$

On cherche des conditions suffisantes sur K pour que (1) admette une solution.

On suppose ici que K est une fonction >0, C^2 , ayant des points critiques y_1, \ldots, y_m non dégénérés et tels que $\Delta K(y_i) \neq 0, \forall i=1, \ldots, m$. On a alors le :

Théorème 3. — Soit k_i l'indice de Morse de K en y_i . Si $\sum_{i/\Delta K (y_i) < 0} (-1)^{k_i} \neq -1$, alors

(1) admet une solution.

Remarque 2. – Un contre-exemple dû à Kazdan-Warner [1] généralisé par Bourguignon $\sum_{(AK)(y_i) < 0} (-1)^{k_i} = -1 \text{ alors (1) peut ne pas avoir de solution.}$ et Ezin [2] montre que si

Remarque 3. – Pour des variétés différentes de (S³, c), voir [10].

Idée de la démonstration. - (a) Par rapport au paragraphe II, on montre d'abord que l'on a : $\dot{a}_i(s) = \bar{C}_i$ grad $K(a_i) + o(1/\lambda_i)$. De sorte que les fonctions $\delta(a_i, \lambda_i)$ se concentrent aux points critiques de K.

- (b) On montre que sur $V(p, \epsilon_0)$, $p \ge 2$, $\epsilon_0 > 0$, I satisfait (P.S.) le long des lignes de flot. Il ne reste donc plus qu'à analyser la situation pour p=1 et $a_1(s) \rightarrow y_i$, y_i étant un des points critiques de K.
- (c) On montre que si $\Delta K(y_i) > 0$, alors (P.S.) est satisfait le long des lignes de flot sur $V(1, \varepsilon_0) \cap \{u \mid |a_1(u) - y_i| < \varepsilon_1\}, \varepsilon_1 \text{ assez petit.}$
- (d) On est donc ramené à étudier la situation en y_i tel que $\Delta K(y_i) < 0$. On ne peut plus se contenter alors de suivre les lignes de flot de -grad I. Il faut construire un pseudo-gradient au voisinage de l'infini qui permet de voir qu'il y a un point critique à l'infini d'indice de Morse $-k_i+3$ (pour I) où k_i est l'indice de Morse en y_i pour K.
- (e) On conclut par un argument de caractéristique d'Euler-Poincaré. Remise le 11 février 1985.

RÉFÉRENCES BIBLIOGRAPHIQUES

- [1] J. KAZDAN et F. WARNER, J. Diff. Geom., 10, 1975, p. 113-134.
- [2] J.-P. BOURGUIGNON et J. P. EZIN, Scalar curvature functions in a conformal class of metrics and conformal transformations (à paraître).
 - [3] J. SACKS et K. UHLENBECK, Ann. Math., 113, 1981, p. 1-24.
- [4] P.-L. LIONS, Comptes rendus, 296, série I, 1983, p. 645-648; The concentration compactness principle in the calculus of variations, the limit case, Riv. Iberoamericana (à paraître).
- [5] M. STRUWE, A global existence result for elliptic boundary value problems involving limiting nonlinearities (à paraître).

- [6] Y. T. Siu et S. T. Yau, *Invent. Math.*, 59, 1980, p. 189-204.
 [7] C. H. TAUBES, Path connected Yang-Mills moduli spaces, *J. Diff. Geom.* (à paraître).
 [8] H. Brézis et J.-M. Coron, *Comptes rendus*, 298, série I, 1984, p. 389-392; Convergence of solutions of H-systems or how to blow bubbles, Archive Rat. Mech. Anal. (à paraître).
 - [9] A. BAHRI, Pseudo-orbites des formes de contact (à paraître); Comptes rendus, 299, série I, 1984, p. 757-760.
 - [10] A. BAHRI et J.-M. CORON (à paraître).
 - [11] R. SCHOEN, Conformal deformation of a Riemannian metric to constant scalar curvature (à paraître).

Centre de Mathématiques, École Polytechnique, 91128 Palaiseau Cedex.