Oral Qualifying Exam Syllabus Yongzhong Xu December 1, 2000

Major Topic: Partial Differential Equations

1. Laplace's Equation: fundamental solutions, mean value formulas, properties of harmonic functions, Green's function, Harnack's inequality, Perron's methods

2. Sobolev Spaces:

- (a) weak derivatives: definition of Sobolev spaces
- (b) approximations: interior/global approximation by smooth functions
- (c) Extensions, traces, compactness
- (d) Sobolev inequalities: Gagliado-Nirenberg-Sobolev inequality, Morrey's inequality, general Sobolev inequalities, Poincaré inequalities
- (e) Fourier transformation methods

3. Second order linear elliptic equations:

- (a) Existence of weak solutions: Lax-Milgram theorem, energy estimates, Fredholm alternatives
- (b) Schauder estimate
- (c) Maximum Principles: weak maximum principle, strong maximum principle, Hopf's lemma, Harnack's inequality

4. The calculus of Variations:

- (a) First variation, Euler-Lagrange equation
- (b) Existence of minimizers: coercity, lower semicontinuous, convexity, weak solutions of Euler-Lagrange equeations
- (c) Morse theorem, Mountain Pass theorem

5. Nonvariational Techniques:

- (a) Monotonicity methods
- (b) Fixed point methods: Banach's fixed point theorem, Schaulder's and Schaefer's fixed point theorems
- (c) Methods of subsolutions and supersolutions

Minor Topic: Algebraic Topology

- 1. Homotopy theory: covering spaces, lifting criterion, higher homotopy groups, van Kampen Theorem
- 2. Singular homology theory: definitions, homotopy invariance, relative homology, excision theorem, Mayer-Vietoris sequences, Betti numbers and Euler characteristics
- 3. Orientation and dua;ity on manifolds: orientation of a manifold, singular cohomology, cup and cap product, Poincaré duality
- 4. Fibrations: definition, homotopy property, an example-loop spaces
- 5. CW-complexes: definition and the homology calculation