Oral Exam: Combinatorics, Graph Theory, Probabilistic Methods, Complexity

Cole Franks
Committee: Michael Saks (Chair), Jeff Kahn, Shubhangi Saraf, Swastik Kopparty
April 27, 2015

1 Combinatorics

Enumeration: Bijections, generating functions, binomial and multinomial coefficients, recurrence relations, inclusion-exclusion, Stirling's formula

Hypergraphs: Sperner, LYM inequality, Erdős-Ko-Rado, Kruskal-Katona, Fishers Inequality, Ray-Chaudhuri Wilson, Frankl-Wilson, Baranyai

Posets and Lattices: Dilworth, linear extensions of posets, distributive and geometric lattices, Birkhoff representation theorem

Correlation Inequalities: Harris-Kleitman, Fortuin-Kasteleyn-Ginibre (FKG), AhlswedeDaykin

Discrepancy: Beck-Fiala, six standard deviations suffice
Ramsey Theory: Ramsey, infinite Ramsey, König tree lemma, probabilistic lower bounds, Van der Waerden, Chvatal-Rödl-Szemerédi-Trotter

Linear Programming: Weak duality theorem, strong duality theorem, fractional coverings and matchings

Algebraic Methods: Combinatorial Nullstellensatz, Schwarz-Zippel Lemma

2 Graph Theory

Matchings: König, Hall, Tutte, stable matchings, matching polytopes
Connectivity: Kruskal's spanning tree algorithm, Menger, max-flow-min-cut, structure of 2-connected graphs

Coloring: 5-color theorem, Brooks, Vizing, Thomassen's 5-list-coloring of planar graphs, perfect graphs, Lovász's proof of weak perfect graph theorem, Galvin's proof of the Dinitz conjecture

Extremal: Turán, statement of the regularity lemma, Erdős-Stone, counting lemma, triangle removal

3 Probabilistic Methods

Basics: Linearity of \mathbb{E}, \cup-bound and Bonferroni inequalities, Chebyshev's inequality, Chernoff bounds, alteration methods

Second Moment Method: Threshold function for containing a fixed subgraph
Local Lemma: Symmetric and general versions, applications to hypergraph discrepancy, Ramsey lower bounds, Latin transversals, application to SAT

Poisson Paradigm: Jansons inequality, number of triangles in $G_{n, p}$, Bruns sieve, number of isolated vertices in $G_{n, p}$.

Martingales: Vertex and edge exposures, Azuma's inequality and application to chromatic number, Talagrand's inequality

Random Graphs: $G_{n, p}, G_{n, M}$, monotone properties, Bollobás-Thomason existence of thresholds

Entropy: Basic properties, Shearer's lemma, Brègman's Theorem

4 Complexity

P vs. NP: Reducibility; the Cook-Levin Theorem; NP-completeness of SAT, independent set, $0 / 1$ integer programming, and directed hamiltonian path; conditions that imply $\mathbf{P} \neq \mathbf{N P}$

Diagonalization: Ladner's Theorem, Oracle Turing Machines and the Baker-Gill-Solovay Theorem

Space-bounded complexity: PSPACE completeness of TQBF, NL completeness of PATH, Savitch's theorem, the Immerman-Szelepcsényi Theorem

Separation theorems: Deterministic and non-deterministic Time and Space Hierarchy Theorems

Polynomial hierarchy: $\boldsymbol{\Sigma}_{i}, \boldsymbol{\Pi}_{i}$, complete problems, conditions that lead to the collapse of $\mathbf{P H}$.

Circuits: $\mathbf{P} \subset \mathbf{P}_{/ \text {poly }}$, Cook-Levin via CKT-SAT, $\mathbf{P}_{/ \text {poly }}$ as TMs with advice, KarpLipton Theorem, Meyer's Theorem, existence of hard functions, nonuniform hierarchy theorem, $\mathbf{N C}_{i}, \mathbf{A C}_{i}$

Randomization: RP, RP and ZPP, error reduction, Sipser-Gacs Theorem, $\mathbf{B P P} \subseteq$ $\mathbf{P}_{/ \text {poly }}$, randomized reductions and definition of BPP $\cdot \mathbf{N P}$

Interactive Proofs: DIP $=\mathbf{N P}, \mathrm{GNI} \in \mathbf{A M}$, $\mathbf{N P}$-completeness of GI implies $\boldsymbol{\Sigma}_{2}^{p}=\boldsymbol{\Pi}_{2}^{p}$, IP = PSPACE

PCP theorem: Equivalence of the three versions, hardness of approximation for MIN-VERTEX-COVER and MAX-INDSET, NP $\subset \mathbf{P C P}(p o l y(n), 1)$

Decision Trees: Decision tree complexity, certificate complexity, randomized decision tree complexity, sensitivity, block sensitivity, degree, relationships between $s(f)$, $b s(f), C(f), D(f), \operatorname{deg}(f)$, and $R(f)$

Communication Complexity: Fooling sets, tiling lower bound, rank lower bound, discrepancy, $\epsilon(f)$, multiparty communication complexity, $G I P_{k}, n$

Lower bounds: Hastad's switching lemma, $\bigoplus \notin \mathbf{A C} 0$, Razborov-Smolensky theorem, sunflower lemma, monotone-circuit lower bound for CLIQUE

