Oral Exam

Bill Cuckler

October 7, 2003

Committee: Profs J. Beck, J. Kahn, J. Komlós, M. Saks

1 Combinatorics and Graph Theory

1.1 Combinatorics

Basic Enumeration: counting arguments, generating functions, recurrence relations, reflection principle, inclusion-exclusion principle
Extremal Set Theory: Ray-Chaudhuri Wilson, Frankl Wilson, Sperner's theorem, Erdős-Ko-Rado, Borsuk conjecture and Kahn Kalai counterexample, Harper, Kruskal Katona
Lattices: Geometric and distributive lattices, Birkhoff covering property, JordanDedekind chain condition, Möbius inversion, Weisner's theorem, Dowling-Wilson theorem
Correlation Inequalities: Harris-Kleitman, FKG, four functions, application to xyz inequality, BK inequality, stochastic domination
Discrepancy: Erdős-Selfridge theorem, Beck-Fiala, discrepancy in arithmetic progression, linear and hereditary discrepancy, 6 standard deviations suffice, Komlós conjecture
Ramsey Theory: Ramsey's theorem, infinite Ramsey, probabilistic lower bounds, stepping-up lemma, van der Waerden, $R(3, n)$ upper and lower bounds

1.2 Graph Theory

Matching: Hall's theorem, bipartite matching algorithm, König's theorem, Tutte's 1 -factor theorem, matching polytope
Connectivity: Menger, Max-Flow-Min-Cut theorem, Dilworth's theorem, Kruskal's algorithm
Planarity: Euler's formula, Kuratowski's theorem, Wagner's theorem
Coloring: chromatic and edge chromatic numbers, Brook's theorem, Vizing's theorem, 5 color theorem, perfect graphs, weak perfect graph theorem
Extremal Problems: Turán's theorem, statement of Regularity lemma and application to Erdős-Stone theorem

1.3 Probabilistic Methods

Basics: Stirling's formula, linearity of expectation, Bonferroni inequalities, coupling, Chebyshev's inequality, Chernoff bound
Alterations: application to lower bound on property B
Second Moment Method: general procedure, application to threshold function for having a certain graph as a subgraph, $2^{\text {nd }}$ moment method for nonnegative random variables
Lovász Local Lemma: symmetric and general versions, applications to linear arboricity conjecture and Latin transversals
Martingales: Azuma's inequality, edge and vertex exposure, applications to chromatic number
Poisson Paradigm: Janson inequalities, application to number of triangles in $G_{n, p}$, Brun's sieve, application to number of isolated points
Random graphs: monotone properties, $G_{n, p}$ versus $G_{n, M}$, existence of threshold functions, relationship between connectedness and having no isolated vertices, probabilistic refutation of Hajós conjecture

2 Probability Theory

Probability Spaces
Random Variables
Borel-Cantelli Lemma
Laws of large numbers
Law of iterated logarithm
Central Limit Theorem
Conditional Expectation
Random Walks and Polya's theorem
Arc-Sine Laws
Maximal ergodic theorem and Birkhoff Ergodic Theorem
Application of ergodic theorem to equidistribution
Kolmogorov's Zero One Law
Percolation Theory:
Bond percolation
Continuity properties of $\theta(p)$
Uniqueness of infinite cluster in L^{d}

