Syllabus for J. Tedor's Oral Qualifying Exam

Committee: Sagun Chanillo, Stephen Greenfield, Xiaojun Huang, François Treves

I. Complex Analysis

- 1. The $\overline{\partial}$ equation in one variable
 - a. Cauchy's integral formula in discs and its applications
 - b. The Runge approximation theorem
 - c. The Mittag-Leffler theorem
 - d. The Weierstraß theorem
- 2. The $\overline{\partial}$ equation in several variables
 - a. Cauchy's integral formula in polydiscs and its applications
 - b. Hartogs' extension theorem
- 3. Domains of holomorphy
 - a. Holomorphic convexity
 - b. Reinhardt domains and convergence of power series
- 4. Pseudoconvexity and plurisubharmonic functions
 - a. The plurisubharmonicity of $-\log \delta(z, \Omega)$, Ω a domain of holomorphy
 - b. Plurisubharmonic exhaustion functions
 - c. Plurisubharmonic convexity
 - d. The Levi form
 - e. Analytic discs and the continuity principle
- 5. L^2 estimates and existence theorems for the $\overline{\partial}$ operator
 - a. Hörmander's solution and the basic estimate
 - b. The Levi problem

(Reference: Chapters 1, 2, 4 of Lars Hörmander, An Introduction to Complex Analysis in Several Variables)

II. Harmonic Analysis

- 1. The Fourier transform
 - a. The L^1 theory and the inversion theorem
 - b. The L^2 theory and the Plancherel theorem
 - c. The class of tempered distributions
 - d. Operators that commute with translations
- 2. Real-variable theory
 - a. The Hardy-Littlewood maximal function
 - b. The Lebesgue differentiation theorem
 - c. The integral of Marcinkiewicz
 - d. The Calderón-Zygmund decomposition
- 3. Basic interpolation theorems
 - a. The Marcinkiewicz interpolation theorem
 - b. The Riesz-Thorin interpolation theorem
- 4. Singular integrals of convolution type
 - a. The gradient condition
 - b. The Hörmander condition
 - c. Homogeneous singular integrals
- 5. Examples of the theory
 - a. The Hilbert transform
 - b. The Riesz transforms
 - c. Poisson integrals

(References: Chapter one of Elias Stein and Guido Weiss, Introduction to Fourier Analysis on Euclidean Spaces and chapters 1–3 of Elias Stein, Singular Integrals and Differentiability Properties of Functions)