Oral Exam Syllabus

1 Lie Groups

- Definition of a Lie group; examples (including classical Lie groups)
- Lie algebras and their relation to Lie groups Exponential mapping Adjoint and co-adjoint representation
- Representations of compact, connected Lie groups
 - Peter-Weyl theorem

Maximal Tori: existence, uniqueness up to conjugation, Weyl covering theorem, examples for classical groups.

Weyl group; action on maximal torus and its Lie algebra

Complexification; roots; positive roots; dominant alcove

- Dynkin diagrams
- Weight spaces, dominant weights

Highest weight theorem

- Formulae
 - Weyl integration formula
 - Weyl character formula
 - Dimension formula
- Homogeneous vector bundles Induced representations Frobenius reciprocity

• Borel-Weil theorem

2 Functional Analysis

• Banach spaces

Examples (L^p spaces, sequence spaces, direct sums, quotients) Linear functionals: duals, reflexive spaces, Hahn-Banach theorems Baire category theorem, Open Mapping theorem, Closed Graph theorem, Banach-Steinhaus (uniform boundedness) theorem Hilbert spaces (polarisation, adjoints, Riesz lemma)

• Topological devices

Nets

Compactness (Tychonoff theorem, Urysohn's lemma, Stone-Weierstrass theorem)

Banach-Alaoglu theorem

- Bounded operator theory
 - Adjoints
 - Spectrum
 - Compact operators
 - Fredholm alternative
 - Spectral decomposition of compact, self-adjoint operators
- Differential operators and spectral theory
 - Schwarz space
 - Fourier transform
 - Distributions
 - Sobolev spaces

References

- [1] Bröcker, T. and tom Dieck, T., Representations of Compact Lie Groups
- [2] Duistermaat, J., and Kolk, J., Lie Groups
- [3] Reed, M. and Simon, B., Functional Analysis