Oral Qualifying Exam Syllabus

Ping Lu 2011

Committee: Richard Falk, Zheng-Chao Han, Young-Ju Lee, Yanyan Li

Major Topic: Numerical Analysis

I. Numerical methods for ordinary differential equations

- i. Derivation and error estimates for one-step methods (e.g., Euler's method)
- ii. Linear Multistep Methods (examples of explicit and implicit methods)
- iii. Consistency, stability, and convergence of multi-step methods

II. Finite Difference methods for partial differential equations

- i. Laplace's equation: 5 point difference scheme (Dirichlet and Neumann boundary conditions)
- ii. Discrete maximum principle, existence and uniqueness of the approximate solution
- iii. Consistency, stability, and error estimates

III. Finite Element methods for elliptic partial differential equations

- i. Standard variational formulation of second order elliptic boundary value problems
- ii. Ritz-Galerkin approximation schemes and simple error analysis (H^1 and L^2)
- iii. Construction of finite element subspace: dimension of the spaces, basis functions, degrees of freedom, barycentric coordinates, affine families
- iv. Error estimates for polynomial and piecewise polynomial interpolation; Bramble-Hilbert lemma
- v. A posteriori error estimates

IV. Finite Difference and Finite Element methods for the heat equation

- i. Explicit and implicit Euler, Crank-Nicolson
- ii. Analysis of the semi-discrete finite element method
- V. Linear Algebraic Solvers

- i. Jacobi, Gauss-Seidel, SOR
- ii. Conjugate-Gradient
- iii. Preconditioning
- iv. Multigrid

Minor Topic: Partial Differential Equations

- i. Laplace's equation: Fundamental solutions, mean value formulas, properties of harmonic functions, Green's functions, energy methods
- ii. Heat equation: Fundamental solutions, mean value formulas, properties of solutions, energy methods
- iii. Wave equation: Solution by spherical means, nonhomogeneous problems, energy methods
- iv. Sobolev spaces: Hölder spaces, weak derivatives, definition and elementary properties of Sobolev spaces (e.g., trace theorems/embedding theorems).
- v. Second-Order Elliptic Equations
 - a. existence of weak solutions; Lax-Milgram, energy estimates, Fredholm alternative
 - b. Weak and strong maximum principles
 - c. Harnack's inequality
 - d. Regularity theory

References

- [1] R. Falk, Lecture notes of Numerical Solution of PDE (Math 575), Spring 2008
- [2] R. Falk, Lecture notes of Numerical Analysis (Math 573), Fall 2009
- [3] R. Falk, Lecture notes of Numerical Analysis (Math 574), Fall 2010
- [4] D. N. Arnold, Instructor's notes: Numerical Analysis of Differential Equations, MATH 8445, University of Minnesota, Fall 2009.
- [5] L.C. Evans, Partial Differential Equations, AMS, 1991.