Oral Qualifying Exam Syllabus

Eduardo Osorio

September 25, 2006

1. Stochastic Calculus and Financial Mathematics

- (a) Probability Theory and Stochastic Processes
 - i. Continuity Theorem and Central Limit Theorem
 - ii. Filtrations and Stopping Times
 - iii. Martingales
 - Doob's Martingale Inequality
 - Doob's Optional Stopping Time Theorem
- (b) Stochastic Calculus
 - i. Brownian Motion
 - Scaled Random Walks
 - Construction of Brownian Motion
 - Quadratic Variation
 - Markov Property
 - Reflection Principle
 - ii. Construction of the Ito Integral
 - iii. Ito-Doeblin Formula
 - iv. Multivariable Stochastic Calculus
 - v. Levy's Characterization Theorem
 - vi. Girsanov's Theorem
 - vii. Martingale Representation Theorem
 - viii. Stochastic Differential Equations
 - Existence and Uniqueness Theorems

- Weak and Strong Solutions
- ix. The Markov Property
 - The Markov Property for Ito Diffusions
 - The Strong Markov Property for Ito Diffusions
- (c) Risk Neutral Pricing
 - i. Risk-Neutral Measure
 - ii. Fundamental Theorems Of Asset Pricing
- (d) Connections with Partial Differential Equations
 - i. The Generator of an Ito Diffusion
 - ii. Kolmogorov's Backward Equation and The Resolvent
 - iii. The Feynman-Kac Formula
 - iv. Black-Scholes-Merton Equation
- (e) Options
 - i. European Options
 - ii. Exotic Options
 - iii. American Derivative Securities
- (f) Jump Processes
 - i. Poisson Process
 - ii. Compound Poisson Process
 - iii. Jump Processes and Their Integrals
 - iv. Stochastic Calculus for Jump Processes
 - v. Change of Measure
 - vi. Pricing in a Jump Model

2. Partial Differential Equations

- (a) Heat Equation
 - i. Fundamental Solution, Cauchy Problem and Non-Homogeneous Case.
 - ii. Solutions for the Bounded Domain Case
 - iii. Mean-Value Formula
 - iv. Properties of Solutions
 - Strong Maximum Principle, Uniqueness

- Regularity
- Local Estimates for Solutions
- v. Energy Methods
 - Uniqueness
 - Backwards Uniqueness
- (b) Transform Methods
 - i. Fourier Transform
 - ii. Laplace Transform
- (c) Second Order Parabolic Equations
 - i. Definitions
 - Parabolic Equations
 - Weak Solutions
 - ii. Existence of Weak Solutions
 - Galerkin Approximations
 - Energy Estimates
 - Existence and Uniqueness
 - iii. Regularity
 - iv. Maximum Principles
 - Weak Maximum Principle
 - Harnack's Inequality
 - Strong Maximum Principle

References:

[1] Steven E. Shreve: Stochastic Calculus for Finance II, Springer, 2004.

[2] Bernt Øksendal: Stochastic Differential Equations, Springer-Verlag, 2003.

[3] Ioannis Karatzas, Steven E. Shreve: Brownian Motion and Stochastic Calculus, Springer-Verlag, 1988.

[4] D.W. Stroock, S.R.S. Varadhan: Multidimensional Diffusion Processes, Springer-Verlag, 1979.

[5] Lawrence C. Evans: Partial Differential Equations, AMS Providence, 1998.

[6] Fritz, John: Partial Differential Equations, Springer-Verlag, 1982.