Oral Qualifying Exam Syllabus Matthew Young myoung@math.rutgers.edu September 30, 2001

Committee (in alphabetical order): R. Bumby, H. Iwaniec, J. Tunnell.

- 1. Analytic Number Theory
 - (a) Analytic properties of L-functions and the Riemann zeta functions
 - (b) Primes in arithmetic progression
 - (c) Siegel zero problem
 - (d) Prime number theorem and prime number theorem for arithmetic progressions
- 2. Algebraic Number Theory
 - (a) Invariants of number fields: rings of integers, discriminants and orders
 - (b) Arithmetic of number fields: splitting of primes, ramification
 - (c) Class groups
 - (d) Structure of units in number rings
- 3. Elliptic Curves
 - (a) Elliptic curves over the complex field: elliptic functions and the j-function
 - (b) Elliptic curves over finite fields
 - (c) Hasse-Weil *L*-functions of elliptic curves
- 4. Modular Forms
 - (a) Modular Forms for the full modular group and its congruence subgroups
 - (b) Eisenstein series
 - (c) Structure of the ring of modular forms
 - (d) Hecke operators

5. Elliptic Functions

- (a) The elliptic functions
- (b) The Weierstrass Function, its differential equation, and a parameterization of the cubic.
- (c) The elliptic integrals
- (d) Addition theorems for the elliptic integrals $F(\Phi)$ and $E(\Phi)$
- (e) The elliptic Jacobi functions
- (f) The Weierstrass theorem on functions possessing an algebraic addition theorem