Syllabus – Kai Medville

- 1. Functional Analysis
 - (a) Hilbert spaces
 - i. Riesz lemma
 - ii. orthonormal basis
 - (b) Banach spaces
 - i. Hahn-Banach theorem
 - ii. Baire category theorem, principle of uniform boundedness, open mapping theorem, closed graph theorem
 - (c) weak topologies, weak-* topology, Banach-Alaoglu theorem
 - (d) Fredholm alternative and the spectral theory of compact operators
- 2. Sobolev Spaces
 - (a) density of smooth functions in Sobolev space
 - (b) global extensions
 - (c) trace theorem
 - (d) Sobolev inequalities (Morrey, Gagliardo-Nirenberg-Sobolev)
 - (e) compact imbedding
 - (f) Poincare inequality
- 3. Laplace's Equation
 - (a) the fundamental solution
 - (b) Poisson's equation, $\Delta u = f$ in Ω , Ω a bounded domain, f Hölder continuous
 - (c) mean value formula and maximum principle for subharmonic functions
 - (d) Harnack's inequality
 - (e) Green's function: for ball and half-space
 - (f) single and double layer potentials
- 4. Second Order Elliptic Equations
 - (a) strong and weak maximum principle
 - (b) uniqueness of Dirichlet and Neumann boundary value problems
 - (c) definition of weak solutions
 - (d) existence: Lax-Milgram, energy estimates, Fredholm alternative
 - (e) regularity of solutions
 - i. interior and boundary regularity, smooth coefficients

ii. Hölder continuity for bounded coefficients

References

- 1. Partial Differential Equations by L.C.Evans
- 2. Elliptic Partial Differential Equationa of Second Order by Gilbarg and Trudinger
- 3. Maximum Principle by Protter and Weinberger
- 4. Functional Analysis I by Reed and Simon
- 5. Lectures on Partial Differential Equations by G.B. Folland