Oral Qualifying Examination Syllabus

Kia Dalili

Committee: W. Vasconcelos, P. Landweber, F. Knop

Algebraic Topology

I. Homology

- 1. Singular homology
- 2. Homotopy invariance
- 3. Mayer-Vietoris sequence
- 4. Relative homology groups
- 5. Excision
- 6. Finite CW complexes
- 7. Skeletal homotopy
- 8. Eilenberg-Steenrod axioms
- II. Cohomology and products
 - 1. Singular Cohomology
 - $2. \ {\rm K\"unneth} \ {\rm formula}$
 - 3. Cup product
 - 4. Hopf invariant
 - 5. Cap product
- III. Manifolds and duality
 - 1. Manifolds and orientation
 - 2. Thom isomorphism theorem
 - 3. Poincaré duality

Commutative Algebra

- I. Basic commutative algebra
 - 1. Localization of rings and modules
 - 2. The Hilbert Nullstellensatz
 - 3. Associated primes and primary decomposition
 - 4. Integral dependence and valuations
 - 5. DVRs, Dedekind rings, and Krull rings
 - 6. Graded rings and modules
 - 7. Hilbert functions and Hilbert polynomials
- II. Cohen-Macaulay Rings
 - 1. Regular sequences
 - 2. Grade and depth
 - 3. Depth and projective dimension
 - 4. Cohen-Macaulay rings and modules
 - 5. Complete intersections
- III. Homological Algebra
 - 1. Chain complexes
 - 2. Chain homotopies
 - 3. Projective and injective resolutions
 - 4. Left and right derived functors
 - 5. Adjoint functors and left/right exactness
 - 6. Tor and Ext
 - 7. Dimensions
 - 8. Koszul complexes
 - 9. Local cohomology