JAKE BARON'S ORAL QUAL SYLLABUS

COMMITTEE: JEFF KAHN (CHAIR), SIMON THOMAS, JÓZSEF BECK, DORON ZEILBERGER

1. Combinatorics

Enumeration: bijections, generating functions, binomial and multinomial coefficients, recurrence relations, inclusion-exclusion, Stirling's formula
Hypergraphs: Sperner, LYM inequality, Erdős-Ko-Rado, Kruskal-Katona, Fisher's Inequality (and generalized Fisher), Ray-Chaudhuri-Wilson, Frankl-Wilson, Harper, Baranyai
Posets and Lattices: Dilworth, linear extensions of posets, $\frac{1}{3}-\frac{2}{3}$ conjecture, distributive and geometric lattices, Birkhoff representation theorem, Möbius inversion, Weisner, Dowling-Wilson
Correlation Inequalities: Harris-Kleitman, Fortuin-Kasteleyn-Ginibre, Ahlswede-Daykin, Shepp XYZ
Discrepancy: Beck-Fiala, Roth's $\frac{1}{4}$-theorem on arithmetic progressions
Ramsey Theory: Ramsey, infinite Ramsey, König tree lemma, probabilistic lower bounds, van der Waerden, statement of Szemerédi

2. Probabilistic Methods

Basics: linearity of \mathbb{E}, \cup-bound and Bonferroni inequalities, Chebychev's inequality, Chernoff bounds, alteration methods
Second Moment Method: application to threshold function for containing a fixed subgraph
Local Lemma: symmetric and general versions, applications to hypergraph discrepancy, Ramsey lower bounds, Latin transversals
Poisson Paradigm: Janson's inequality and application to number of triangles in $G_{n, p}$, Brun's sieve and application to number of isolated vertices in $G_{n, p}$
Martingales: vertex and edge exposures, Azuma's inequality and application to chromatic number
Random Graphs: $G_{n, p}$ vs. $G_{n, M}$, monotone properties, existense of threshold functions, Bollobás-Thomason, probabilistic refutation of Hájos conjecture
Entropy: basic properties, Shearer's lemma, application to Minc Conjecture
Discrete Random Choice: Balog-Szemerédi-Gowers

3. Graph Theory

Matchings: König, Hall, Tutte, stable matchings, matching polytopes
Connectivity: Kruskal's algorithm for minimum weight spanning tree, Menger, max-flow-min-cut, structure of 2-connected graphs
Planarity: Euler's formula, Kuratowski, Wagner
Coloring: 5-color theorem, Brooks, Vizing, Thomasson's 5-list-coloring of planar graphs, perfect graphs, Lovász's proof of weak perfect graph theorem, Galvin's proof of Dinitz conjecture
Extremal: Turán, statement of regularity lemma, Erdős-Stone, Chvátal-Rödl-Szémeredi-Trotter

4. Foundations

Recursion Theory: recursive functions, Ackerman function, turing machines, Church-Turing thesis (statement), computable and recursively enumerable sets, turing degrees, jump operator, halting problem
Model Theory: Gödel completeness, Henkin theories, compactness, ultrafilters, ultraproducts, Łoś, types, omitting types, Löwenheim-Skolem
Basic Set Theory: ordinals, cardinals, cardinal arithmetic, König's lemma, equivalent forms of Choice, \diamond, MA, Aronszajn trees, Suslin trees, Root system lemma
Forcing: forcing theorems (statements), types of ultrafilters on ω (Ramsey, selective, weakly selective)
Descriptive Set Theory: Polish and standard Borel spaces, Borel isomorphism theorem, Borel and projective hierarchies

