ORAL QUAL SYLLABUS: SET THEORY; ERGODIC THEORY

SAMUEL COSKEY

Set Theory.

- Basic set theory (Jech 1-9)
 - Königs lemma, cardinal arithmetic in ZFC
 - Fodor's lemma, Solovay's theorem
 - Ramsey's theorem
 - there exists an Aronsajn tree
 - Shanin's root system lemma ($\times 2$)
- Descriptive set theory (Jech 11)
 - elementary properties of Polish spaces
 - non-collapsing of the Borel hierarchy
- Models of set theory (Jech 12,13)
 - Mostowski's collapsing theorem
 - relativization and absolute formulas
 - reflection principle
 - L is a model of ZFC, L_{α} is absolute (statements)
 - condensation lemma
 - -L is a model of GCH, \diamondsuit
- Forcing basics (Kunen, ch. VII, VIII)
 - fundamental forcing theorems (statements)
 - chain and closure conditions on a partial order
 - mixing and maximal lemmas
 - Cohen and Lévy forcing
 - product and iterated forcing
 - factor lemma (statement)
 - independence of MA+ \neg CH
 - consequences of MA, e.g. 2^{ω} is regular
 - Easton supported forcing, Easton's theorem
- Large cardinals (Jech 17, Kanamori 5, Joel's notes)
 - measurable cardinals and embeddings $j: V \to M$
 - Lévy-Solovay theorem (small forcing and measurables)
 - lifting criterion; diagonalization criterion
 - find a weakly compact cardinal in L
 - supercompact cardinals have a Laver function
 - Silver's theorem (failure of GCH at a measurable)
 - Laver's theorem (the Laver preparation)
 - Reinhardt cardinals

SAMUEL COSKEY

Ergodic Theory.

- Real analysis (Walters, others)
 - regularity properties of Borel measures
 - Jensen's inequality
 - Riesz representation theorem (statement)
 - spectral theorem for unitary operators (statement)
 - conditional expectation
 - existence and properties of Haar measure (statements)
 - characters of compact abelian groups (statements)
- Measure-preserving transformations (Walters 1)
 - recurrence theorem
 - equivalent formulations of ergodicity
 - equivalent formulations of weak and strong mixing
 - Von-Neumann mean ergodic theorem
 - Garsia maximal inequality
 - Hopf ergodic theorem
 - Birkhoff ergodic theorem
- Examples
 - ergodic transformation on $\mathbb R$
 - group rotations, endomorphisms, and affine transformations
 - Bernoulli shifts
- Discrete and continuous spectrum (Walters 2,3)
 - notions of similarity
 - multiplication theorem
 - $-\,$ spectrum of an ergodic transformation
 - continuous spectrum theorem
 - discrete spectrum theorem
 - representation theorem for discrete spectrum
- Topological dynamics (Walters 5.2-4)
 - minimality
 - transitivity
- Unique ergodicity (Walters 6.5)
 - the topological space of invariant measures
 - existence of ergodic measures
 - characterizations of unique ergodicity
 - basic facts about *g*-measures

References.

- Jech, Thomas. Set Theory. Third Edition.
- Kanamori, Akihiro. The Higher Infinite.
- Kunen, Kenneth. Set Theory: An Introduction to Independence Proofs.
- Halmos, Paul R. Lectures on Ergodic Theory.
- Walters, Peter. An Introduction to Ergodic Theory.

 $\mathbf{2}$