Syllabus for the Oral Qualification Exam

Bin Guo

Committee: Sagun Chanillo, Zheng-Chao Han, Xiaojun Huang, Jian Song (chair)

I. Complex Geometry

- 1. Complex Manifolds
 - Stokes' Theorem
 - De Rham and Dolbeault Cohomology
 - De Rham Theorem and Dolbeault Theorem
 - Submanifolds and Subvarieties
- 2. Kähler Manifolds
 - Hodge Decomposition for Kähler Manifolds
 - Kodaira-Serre Duality
 - \bullet $\partial\bar\partial\text{-Lemma}$ on Kähler Manifolds
- 3. Kodaira Embedding Theorem
 - Kodaira Vanishing Theorem
 - Curvature of Line Bundles
 - Adjunction Formulas
 - Chern Classes of Line Bundles
 - Blowing Up
- 4. Riemann Surfaces and Algebraic Curves
 - Embedding Riemann Surfaces
 - Riemann-Hurwitz Formula
 - The Genus Formula
 - The Riemann-Roch Formula

II. Elliptic Partial Differential Equations

- 1. Classical Solutions
 - Maximum Principles
 - Schauder Interior Estimates
 - Boundary and Global Estimates
- 2. Sobolev Spaces
 - Weak Derivatives
 - The $W^{k,p}$ Spaces
 - Sobolev Imbedding Theorems
 - The Morrey and John-Nirenberg Estimates

- 3. Weak Solutions
 - The Marcinkiewicz Interpolation Theorem
 - The Calderon-Zygmund Inequality
 - L^p Estimates
 - De Giorgi-Nash-Moser Iteration
 - Hölder and Harnack Estimates

III. Additional Topics

- 1. Evans-Krylov Theorem for Monge-Ampere Equations
- 2. Poincare-Lelong Formula

References

- [1] P. Griffiths and J. Harris, *Principles of Algebraic Geometry*.
- [2] D. Gilbarg and N. Trudinger, *Elliptic Partial Differential Equations of Second Order*.
- [3] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems.