Alex Zarechnak's Oral Exam Syllabus

May 13, 2003

I. Bohmian Mechanics

- A. Quantum Mechanics: Standard Formalism
 - 1. Postulates
 - 2. Ehrenfest's Theorem
 - 3. Uncertainty Principle
 - 4. Propagator for free particle (1-d)
 - 5. Standard examples of solving time ind. Schrodinger Eq.
 - 6. Formulation of Spin
 - 7. Formulation of Identical Particles without spin
 - 8. Decoherence
- B. Quantum Mechanics: Foundational Issues
 - 1. Measurement Problem
 - 2. Interpretations of Quantum Mechanics (non-Bohmian)
 - a. Copenhagen Interpretation
 - b. Decoherent Histories
 - c. Spontaneous Localization
 - d. Many Worlds
 - 3. Hidden Variables
 - a. Nonlocality
 - i. EPR paradox
 - ii. Bell's Inequality
 - b. Other Impossibility Theorems
 - i. Hardy's Theorem
 - ii. Von Neuman's Theorem
 - iii. Kochen-Specker Theorem
- C. Bohmian Mechanics
 - 1. Postulates
 - 2. Formulation of Spin
 - 3. Formulation of Identical Particles without spin
 - 4. Bohmian Mechanics and the Measurement Problem
 - 5. Global Existence and Uniqueness of Trajectories
 - 6. The Quantum Potential
 - 7. Emergence of Standard Formalism
 - a. Quantum Equilibrium Hypothesis (QEH)
 - b. Equivariance
 - c. Conditional Wave Function
 - d. Effective Wave Function
 - e. Emergence of Born Statistics
 - f. Absolute Uncertainty
 - g. The Foundation of QEH
 - h. The Role of Operators
 - i. Bohmian Experiments

- ii. Discrete Experiments
- iii. Self-Adjoint Operators
- iv. PVMs
- v. POVMs
- vi. Measure Valued Quadratic Maps on H
- vii. Weak Formal Measurements
- viii. Strong Formal Measurements
- ix. Weak Formal Experiments
- x. Strong Formal Experiments
- xi. Measurements of Commuting Families
- xii. Sequential Measurements
- 8. Contextuality
- 9. Bohmian Mechanics and the Impossibility Theorems
- 10. Specific experiments from a Bohmian perspective
 - a. Stern-Gerlach experiment
 - b. Double Slit Experiment
 - c. Spectral Lines of Hydrogen

II. Differential Geometry

- A. Basic Definitions and examples
 - 1. Definitions of Manifolds, tangent vectors, vector fields, vector bundles
 - 2. Examples: Surfaces, Lie groups-Matrix groups, submanifolds
 - 3. Various mappings such as immersions, induced maps
- B. Tensors and differential forms
 - 1. Tensors of all types, tensor fields, maps and tensors
 - 2. Exterior algebra, exterior derivative, differential forms
 - 3. Orientability and n-forms
 - 4. Symmetrizing, alternating, contracting, and multiplying tensors
 - 5. Tensor Derivations
 - 6. Lie Derivatives
 - 7. Poincare Lemma and its partial converse
- C. Vector fields
 - 1. Existence and Uniqueness Theorems for ODE
 - 2. One-Parameter groups
 - 3. Vector Fields as flows and as differential operators
 - 4. Lie algebra of vector fields
- D. Metrics and Connections
 - 1. Definition of Metrics and Connections
 - 2. Covariant Derivative
 - 3. The Levi-Civita connection
 - 4. Parallel Translation
 - 5. Variations
 - 6. Geodesics
 - 7. Frame fields
 - 8. Cartan Structural Equations
 - 9. Exponential Map
 - 10. Hopf-Rinow-De Rham Theorem
 - 11. Curvature
 - a. Riemann Curvature Tensor
 - b. Sectional Curvature
 - c. Bianchi Identities
- E. Integration on Manifolds
 - 1. Definition of the integral
 - 2. Manifolds with boundary
 - 3. Stokes' Theorem
- F. Surface theory
 - 1. Fundamental Forms, Gauss Curvature, Principal Curvature
 - 2. The Gauss Equation and Codazzi-Mainardi Equations
 - 3. Gauss-Bonnet Theorem