Oral Qualifying Exam Syllabus

Michael Breeling

February 15, 2016

1 Functional Analysis

- 1. Banach spaces
 - Theorems of Hahn-Banach, open mapping, closed graph, Baire category, Banach-Alaoglu, and the uniform boundedness principle
 - Weak and weak* topologies
 - Bounded, unbounded, closed, and compact operators
 - Reflexive and separable spaces
- 2. Hilbert spaces
 - Orthogonality, projections, Fourier series, Riesz representation
- 3. Spectral theory
 - Spectrum, resolvent, and the Fredholm alternative for compact operators
 - Functional calculus and the spectral theorem for compact, bounded, and unbounded selfadjoint operators
 - Types of spectra; pure point, absolutely continuous, continuous singular
 - Characterization of self-adjoint operators
 - Stone's theorem
 - Kato-Rellich theorem

2 Partial Differential Equations

- 1. Fourier transform
- 2. Laplace equation
 - Mean value property, maximum principle, fundamental solution, Green's functions, Perron's method, and energy methods
- 3. The spaces $H^1(\mathbb{R}^n)$ and $H^{1/2}(\mathbb{R}^n)$; weak derivatives, approximation by smooth functions

3 References

- 1. Evans, Lawrence. Partial Differential Equations.
- 2. Lieb, Elliot H. and Loss, Michael. Analysis, 2nd ed.
- 3. Reed, Michael and Simon, Barry. Methods of Mathematical Physics I: Functional Analysis.