ORAL QUAL SYLLABUS

1. Logic

1.1. Model Theory.

- Basics
 - Compactness, Lowenheim-Skolem theorems, Tarski-Vaught Test
- Fraïssé
 - General theory
 - Quantifier elimination
 - Existence proofs
 - Classification (homogeneous tournaments)
 - Homogeneous k-dimensional permutations
- ℵ₀-Categoricity
 - Omitting types
 - Atomic, prime, homogeneous, and saturated models
 - Oligomorphic automorphism group
- Order Indiscernibles
 - Existence
 - Locally finite quadrangles
 - Stability implies true indiscernibles
- Morley Rank
 - Definition in terms of types (Cantor-Bendixson)
 - Definition in terms of definable sets
 - \aleph_1 -categoricity $\Rightarrow \aleph_0$ -stability \Leftrightarrow Morley rank is defined
 - Rank 1, degree $1 \Leftrightarrow$ strongly minimal
 - Strongly minimal geometry
 - Strongly minimal $\Rightarrow \aleph_1$ -categorical

1.2. Descriptive Set Theory.

- Polish Spaces
 - Borel isomorphism theorem
 - Borel-generated topologies, Ramsey-Mackey theorem
 - Sequential trees
- Borel and Projective Hierarchies
 - Basic definitions and facts, including closure properties
 - Existence of universal sets, non-collapsing
 - Every Polish space contains an analytic set that is not Borel
 - Equivalence of various definitions of analytic sets
 - Regularity properties of analytic sets

ORAL QUAL SYLLABUS

1.3. Forcing.

- Statements of fundamental forcing theorems
- Force CH, force \neg CH, force \Diamond
- Chain and closure conditions
- Cohen forcing
- Martin's axiom
- Product forcing
- Easton's theorem

2. Combinatorics

- Enumeration: bijections, binomial and multinomial coefficients, generating functions, recurrence relations, inclusion-exclusion
- Extremal Results: Sperner's theorem, Dilworth's theorem, Erdos-Ko-Rado
- **Probabilistic Method:** linearity of expectation, union bound, Chebyshev's inequality, Chernoff bounds, Lovasz local lemma
- Ramsey Theory: Ramsey, infinite Ramsey, probabilistic lower bounds, statement of van der Waerden
- Linear Programming: duality, combinatorial min-max theorems
- Entropy: basic properties, Shearer's lemma, Bregman's theorem
- Algebraic Methods: Schwartz-Zippel Lemma, Combinatorial Nullstellensatz

 $\mathbf{2}$