ORAL QUAL SYLLABUS

1. LOGIC

1.1. Model Theory.

- Basics
- Compactness, Lowenheim-Skolem theorems, Tarski-Vaught Test
- Fraïssé
- General theory
- Quantifier elimination
- Existence proofs
- Classification (homogeneous tournaments)
- Homogeneous k-dimensional permutations
- \aleph_{0}-Categoricity
- Omitting types
- Atomic, prime, homogeneous, and saturated models
- Oligomorphic automorphism group
- Order Indiscernibles
- Existence
- Locally finite quadrangles
- Stability implies true indiscernibles
- Morley Rank
- Definition in terms of types (Cantor-Bendixson)
- Definition in terms of definable sets
- \aleph_{1}-categoricity $\Rightarrow \aleph_{0}$-stability \Leftrightarrow Morley rank is defined
- Rank 1 , degree $1 \Leftrightarrow$ strongly minimal
- Strongly minimal geometry
- Strongly minimal $\Rightarrow \aleph_{1}$-categorical

1.2. Descriptive Set Theory.

- Polish Spaces
- Borel isomorphism theorem
- Borel-generated topologies, Ramsey-Mackey theorem
- Sequential trees
- Borel and Projective Hierarchies
- Basic definitions and facts, including closure properties
- Existence of universal sets, non-collapsing
- Every Polish space contains an analytic set that is not Borel
- Equivalence of various definitions of analytic sets
- Regularity properties of analytic sets

1.3. Forcing.

- Statements of fundamental forcing theorems
- Force CH , force $\neg \mathrm{CH}$, force \diamond
- Chain and closure conditions
- Cohen forcing
- Martin's axiom
- Product forcing
- Easton's theorem

2. Combinatorics

- Enumeration: bijections, binomial and multinomial coefficients, generating functions, recurrence relations, inclusion-exclusion
- Extremal Results: Sperner's theorem, Dilworth's theorem, Erdos-Ko-Rado
- Probabilistic Method: linearity of expectation, union bound, Chebyshev's inequality, Chernoff bounds, Lovasz local lemma
- Ramsey Theory: Ramsey, infinite Ramsey, probabilistic lower bounds, statement of van der Waerden
- Linear Programming: duality, combinatorial min-max theorems
- Entropy: basic properties, Shearer's lemma, Bregman's theorem
- Algebraic Methods: Schwartz-Zippel Lemma, Combinatorial Nullstellensatz

