Oral Qualifying Exam Syllabus Francis Seuffert August 2013

Functional Analysis and Operator Theory

- 1. Banach Spaces
 - a. Continuity of Bounded Linear Operators as a Function on Weak Topologies
 - b. Sequential Compactness of Reflexive Spaces
 - c. Banach-Alaoglu Theorem
 - d. Metrizability of of the Unit Ball in the Weak Topology When the Dual Space is Separable
 - e. Reisz's Lemma
 - f. Compactness of The Unit Ball in the Strong Topology
 - g. Hahn-Banach Theorem
- 2. Hilbert Spaces
 - a. Projection Lemma
 - b. Riesz Representation Theorem
 - c. Stampacchia and Lax-Milgram
 - d. Hilbert Sums and Orthonormal Bases
- 3. Compact Operators on a Hilbert Space
 - a. Compact Operators as the Closure of Finite Rank Operators
 - b. Fredholm Alternative
 - c. Riesz-Schauder Theorem
 - d. Spectral Decomposition of Self-Adjoint Compact Operators

Partial Differential Equations and Concentration Compactness

- 1. Laplace Equation
 - a. Fundamental Solution
 - b. Properties of Harmonic Functions: Mean Value Property, Maximum Principles, Regularity, Liouville's Theorem, Harnack's Inequality
 - c. Green's Function on the Half-Space and the Ball
 - d. Energy Methods: Uniqueness and Dirichlet's Principle
- 2. Existence of Weak Solution of Second Order Elliptic Equations
 - a. Lax Milgram Theorem
 - b. Energy Methods
 - c. Fredholm Alternative
- 3. Concentration Compactness Theorem
 - a. Sobolev Inequality
 - b. Application to Sobolev Inequality to Prove Existence of Minimizers
 - c. Helly Selection Principle
 - d. Rellich Theorem
 - e. Lebesgue-Radon-Nikodym Theorem
 - f. Brezis-Lieb Lemma