Oral Qualifying Examination Syllabus

Jonathan Jaquette

April 3, 2014

1 Algebraic Topology

- Fundamental Group
 - Seifert-van Kampen theorem
 - Covering Spaces
 - Application(s)
 - * Fundemental Theorem of Algebra
 - * Picard's Little Theorem
- Homology
 - Simplicial, Singular, and Cellular Homology
 - Eilenberg Steenrod Axioms
 - Mayer-Vietoris Long Exact Sequence
 - Universal Coefficients for Homology
 - Application(s)
 - $\ast\,$ Leftshetz Fixed Point Theorem
- Cohomology
 - Simplicial, Singular, and Cellular Cohomology
 - Universal Coefficient Theorem
 - Cup and Cap Products
 - Künneth Formula
 - Orientation and Duality

2 Functional Analysis

- Banach Spaces
 - Hahn-Banach Theorem
 - Open Mapping Theorem and Closed Graph Theorem
 - Weak topology and weak* topology
 - Banach Alaoglu Theorem
- Locally and Uniformly Convex Spaces
 - Seminorms and Minkowski functionals
 - Krein Milman Theorem
 - Application(s)
 - * Stone Weierstrass Theorem
- Bounded Linear Operators
 - Fredholm Operators
 - Compact Operators
 - Measures of Noncompactness
 - Spectrum of Linear Operators
 - Functional Calculus
- Fixed Point Theorems
 - Tychonoff Fixed Point Theorem
 - Schauder Fixed Point Theorem
 - Application(s)
 - * Peano Existence Theorem for ODEs

References

[Hat01] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2001.

[Lax02] Peter Lax. Functional analysis. Pure and applied mathematics. Wiley-Interscience, 2002.