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1. History This organization of the study of continued fractions can be traced to an article of Euler
in 1737. The theorem that every quadratic irrational has a continued fraction that is eventually periodic was
first proved by Lagrange in 1770. The version given by Gauss in 1801 remains the standard treatment of the
subject, except for the characterization of inverse periods by Galois in 1828.

The book of Perron is the standard for both the arithmetic and analytic theory of continued fraction,
and it includes references to many of the original articles.

Weil notes that these original sources are widely available in the collected works of their authors
(although I did not find a copy of works of Lagrange in a search of the Rutgers library catalog), but he also
gives a detailed description of many of the methods developed in the papers that he cites. In addition to the
publications, there are letters that have been collected and published that give insight into the development
of these results, and Weil includes these references as well.

Here are the references (including speculation, based on other citations, about where they may be found
in collected works that have not been examined.

L. Euler, “De fractionibus continuis”,C. Pet., 1737 (Opera Omnia, I-14, 187–215).
J. L. Lagrange, “Additions au mémoire sur la resolution des équations numeriques”,Mém. Berl. 24,

1770 (Œvres, VII, 125–127)
C. F. Gauss,Disquisitiones Arithmeticae(English translation by Arthur A. Clarke), Springer, 1986.
E. Galois, “Démonstration d’un théorème sur les fractions contiues périodiques”,Annales de mathé-

matiques pures et appliques19 (1828-29) (also inŒvres)
O. Perron,Die Lehre von den Kettenbrüchen, Chelsea reprint of 1924 edition.
A. Weil, Number Theory: An approach through history; From Hammurapi to Legendre, Birkhäuser,

1984.

1. Reduction. The modern definition of areduced quadratic irrational ξ = (a +
√

D)/c appears
in Gauss’ book (Article 183). It requiresξ > 1 and the conjugateξ∗

= (a −
√

D)/c to be between−1 and
0.

The steps of the continued fraction ofξ are rational functions with rational coefficients, so their appli-
cation toξ∗ will give the conjugate of their application toξ . These steps are determined to assure that all
ξk > 1, so we need to show the−1 < ξ∗

k < 0 for large enoughk. First note that, if this is true for sonek,
it is also true fork + 1. The continued fraction step involves subtractingak = bξkc, which movesξ∗

k below
−1; and then inverting, which moves it back to the interval(−1, 0).

Indeed, if there are at least two integers greater thanξ∗ and less thanξ , the nextξ∗ will be in (−1, 0)

by the above argument.
If there is one integer greater thanξ∗ and less thanξ , whenξ is translated into(0, 1), ξ∗ falls in (−1, 0).

Then,−1, 0, and 1 are all between the nextξ and the nextξ∗. As noted above, we get a reduced pair of
conjugates inone more step.

If there is one integer betweenξ andξ∗, butξ < ξ∗, one continued fraction step givesξ∗ < ξ with at
least one integer between them. We have seen how these soon become reduced.

If there areno integers betweenξ andξ∗, the continued fraction step translatesboth into (0, 1) and
then inverts. This increases the difference between the conjugates. Indeed, we have seen that there is an
expansion by a scale factor greater than 1 in two such steps. Thus, a finite number of steps will be sure
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to lead to conjugates whose difference is greater than 1. Two such numbers must have an integer between
them, so they soon become reduced.

We have shown that every quadratic irrational leads to a reduced pair of conjugates in a finite number
of steps of the continued fraction, and all subsequent steps give reduced pairs.

2. Reversing steps. If the pair (ξ, ξ∗) is reduced, so is(−1/ξ∗, −1/ξ) and if a = b−1/ξ∗c,
−a − 1 < 1/ξ∗ < −a, but 1/ξ∗ is where the previousξ∗ wound up after subtractingbξc. Since it would
have started in(−1, 0) if the previous pair were reduced, this shows thata is also the greatest integer in
the previousξ if that is reduced. This shows thatevery reduced pair appears in a purely periodic continued
fraction.

This investigation and its interpretation seems to have been noticed first by Galois. In addition to
showing that this definition ofreduced pair is anexact characterizationof numbers appearing in a period,
it shows that reversing the period gives the negative reciprocal of the conjugate.

This admits a neat description using the matrix interpretation of linear fractional transformations. The
numberξ is an abbreviation of the fractionξ/1, and the numerator and denominator of this fraction should
be considered as the components of a vector. The period of a continued fraction leads to a matrix

P =

(
a b
c d

)
=

(
a1 1
1 0

)
· · ·

(
an 1
1 0

)
that takes this vector to a vectorrepresenting the same fraction. That is, to a vectorin the same direction.
This means that this vector is aneigenvectorof the period matrix. The corresponding eigenvalue is a
root of the characteristic polynomial of the matrix, which we know isx2

− (a + d)x + (ad − bc). In
this case, the determinantad − bc = (−1)n, so these eigenvalues are units of the ring with discriminant
(a + d)2

− 4(ad − bc) = (a − d)2
+ bc. The equation whose roots areξ andξ∗ is cx2

+ (d − a)x − b,
which we recognize as having the same discriminant as the eigenvalue.

Since the factors ofP are symmetric, the product in the reverse order is the transpose ofP. However, if

U =

(
0 1

−1 0

)
,

a direct calculation shows thatU MU−1 is the transpose of the adjugate matrix ofM . For nonsingular
matrices, the adjugate represents the inverse linear fractional transformation, so transposing gives the inverse
action on the negative reciprocal ofξ . The inverse of a unitη is ±η∗, so a conjugate must also be taken to
get the quantity belonging to the eigenvalueη.
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