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Continued Fractions of Numbers, I
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0. Introduction. Continued fractions have a long history. The terminating continued fraction of
a rational number is closely related to the Euclidean Algorithm. This extends to a construction defined for
all real numbers. With suitable conventions, this leads to a representation of real numbers that is unique for
irrational numbers.

Our main concern will be with the use of continued fractions to generated good rational approximations
to real numbers, but we begin with a digression into the role of continued fractions in Algebraic Number
Theory.

Euler was able to show that periodicity in the steps of this construction implied that the number was
the root of a quadratic equation with rational coefficients and Lagrange established the converse. Arithmetic
properties of orders (rings of algebraic integers, not necessarily maximal) in real quadratic fields are closely
tied to continued fractions. This will lead to a proof of a striking new theorem of Joseph Lewittes from a
preprint entitled “Continued Fractions and Quadratic Irrationals”.

1. Representing Real Numbers. Before looking at the continued fraction, let us consider
the familiardecimal expansionof real numbers.

We know how to determine decimal expansions of all real numbers, but after aninitial step (to be
described below) we have a numberx with 0 ≤ x < 1. Theleading decimal digit of x is a = bxc and
x′

= x − a is a new quantity with 0≤ x′ < 1. The decimal expansion is produced by iterating this
construction. More precisely, we start fromx1 with 0 ≤ x1 < 1 and define sequences of integersai and real
numbersxi by ai = bxi c andxi +1 = xi − ai . An easy induction shows that

0 ≤ xi < 1 and ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

for all i > 0.
Given a sequence〈ai 〉 of decimal digits,one forms the series

∞∑
i =1

ai 10−i . (1)

Since theai are bounded, this series converges. Indeed, it is easily shown that the limit is nonnegative and
bounded by 1. It remains to show that it converges to the numberx1 used to generate the sequence. Along
the way, we explain a source of some confusion, that, when allai = 9, the series converges to 1, although
1 was excluded from the numbers used to generate the sequencesai . We shall see that it is afundamental
property of representations of real numbers.

Although the limit of the partial sums of a series appears to be the natural to construct a number from
the sequence ofai , it is more convenient in other cases to define numbers as the intersection of a sequence
of nested intervals. For this to work, the intervals must becompact. Thus, our basic interval should be the
closedinterval[0, 1]. Prescribingai for 1 ≤ i ≤ n restricts the values of the sum(1) to an interval of length
10−n. Since the intervals are compact, they have a nonempty intersection that is an interval, and since the
lengths approach zero, there cannot be more than one point in the intersection. The selection of the next
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decimal digit consists of dividing the interval[0, 10] into the 10 intervals between consecutive integers in
such a way thatx will be contained in the interval of possible sums. Our choice guarantees that our original
numberx is a possible value represented by the decimal expansion, but each infinite decimal expansion
represents a unique number. Two such intervals arealmost disjoint — they are disjoint except that adjacent
intervals have a single endpoint in common. We made the construction of the decimal expansion unique by
selection the rightmost interval when we had a choice, and then all subsequentai become 0; had we chosen
the other interval, all subsequentai would be 9.

Since intervals on the real line areconnected, such ambiguities will arise whenever intervals are
partitioned into closed subintervals. For the decimal expansion, numbersx such that 10nx is an integer for
some integern have ambiguous representations.

For numbers that are not initially in the interval[0, 1], first extract the sign ofx allowing restriction to
positivex. Now, there will bek > 0 with x ≤ 10k. Choose such ak and form the decimal expansion of
10−kx. Insert adecimal point after the firstk digits of this to signify that the first digit is the coefficient of
10k−1. In this notation, it is conventional to omit leading zero digits to the left of the decimal point, since
they contribute noting to analog of the sum(1)

2. Continued fractions of Numbers.
The continued fraction expansion is also obtained by an inductive procedure. The inductive step,

starting with a real numberξ consists of settinga = bξc andξ ′
= 1/(ξ − a). If ξ is an integer, this will be

consider to lead toξ ′ being thespecial symbol∞ which causes the process to terminate.
This step leads toξ ′ > 1, but we should turn this into a closed interval by adding endpoints 1 and∞.

If we start in this interval,a = bξc is apositive integer. This construction leads to the termsa0, a1, a2, . . .,
wherea0 is an arbitrary integer and theai for i > 0 are positive integers. It is customary to indicate that this
sequence arises from the continued fraction algorithm by enclosing it in brackets. Theai are separated by
commas, except that the special term (which is special since it is not required to be positive)a0 is followed
by a semicolon.

The function f (x) = n + 1/x for some fixed integern maps the interval[1, ∞] into the interval
[n, n + 1] of numbers whose continued fractions begin withn. For each interval[x0, x1], the length of its
image[ f (x1), f (x0)] is x−1

0 − x−1
1 = (x1 − x0)/(x0x1). Since bothx0 andx1 are at least 1 and one is

strictly greater, the image is strictly shorter than[x0, x1]. However, more is needed to show that the intervals
defined by initial segments of a continued fraction have lengths approaching zero. To do this, we consider
compositions of these maps. We have

f (x) = n +
1

x
=

nx + 1

x

so this is a special case of thelinear fractional transformation

ax + b

cx + d
.

Composing two such functions gives

a′

(
ax+b
cx+d

)
+ b′

c′

(
ax+b
cx+d

)
+ d′

=
a′(ax + b) + b′(cx + d)

c′(ax + b) + d′(cx + d)
=

(a′a + b′c)x + (a′b + b′d)

(c′a + d′c)x + (c′b + d′d)
,
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so it is again a linear fractional transformation. If the coefficients are written as a matrix(
a b
c d

)
then the matrix corresponding to the composition is(

a′ b′

c′ d′

) (
a b
c d

)
For the special functions that are used to form continued fraction,d = 0, b = c = 1 anda is a positive
integer. In particular, the determinant is−1. Composingk such terms gives a linear fractional transformation
represented my a matrix of determinant(−1)k whose entries are nonnegative integers. The slowest growth
of these entries occurs when alla = 1, and then the size of the entries in the product are asymptotic to
constant multiples ofτ k, whereτ =

(
1 +

√
5

)
/2. This shows that the lengths of intervals defined byk

partial quotients have lengths less thanCτ−2 for some absolute constantC ask → ∞.
Thus, each sequence of partial quotients determines a number. The construction of the partial quotients

from the number is given by dividing[1, ∞] into the intervals[n, n + 1] and the special value∞. Each
integer greater than 1 belongs to two intervals, but other numbers belong to unique intervals. A value in
[n, n + 1] is written asn + 1/x, son corresponds tox = ∞ andn + 1 corresponds tox = 1. The number
1 has the string of partial quotients〈1, ∞〉, so each integer has a terminating continued fraction.

The image of∞ under a linear fractional transformation represented by a matrix(
a b
c d

)
is a/c. Since the entries are integers for the matrices appearing in the continued fraction construction, this
is rational. Conversely, if a number is rational, the continued fraction step isexactlya step of theEuclidean
algorithm . Since this process terminates, every rational has a terminating continued fraction expansion —
indeed, exactlytwo terminating continued fraction expansions.

3. Periodic Continued fractions. After the terminating expansions, the next thing to consider
are the periodic expansions. If a continued fraction expansion of a numberx is purely periodic, the period
gives a linear fractional transformation such that

x =
ax + b

cx + d
.

This leads to equationcx2
+ (d − a)x − b = 0. This is a quadratic equation with integer coefficients and

discriminant(d − a)2
+ 4bc = (a + d)2

− 4(ad − bc). An efficient way to calculate the matrix that is a
product of the special matrices

Ma =

(
a 1
1 0

)
is to start by writing an identity matrix. Then as you read the numbersai from the continues fractionfrom
left to right , introduce a new columnon the left that isai times the current first column plus the current
second column. This works because this is thecolumn operationgiving the first column after multiplying
by Mai while the second column is the old first column. The first two columns of this array is the desired
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matrix. Theai may be written above the column that it introduces to serve as a reminder of the steps in the
calculation. For example,[4, 1, 1, 1] leads to

1 1 1 4

14 9 5 4 1 0
3 2 1 1 0 1

and the equation

x =
14x + 9

3x + 2

expands to 3x2
−12x −9 = 0. Removing the common factor of 3 in the coefficients givesx2

−4x −3 = 0,
whose roots are 2±

√
7.

Since the determinantad−bc = ±1 in this case, this discriminant has the form(a+d)2
±4. Although

this appears to be special — excluding numbers like 7 — we found that the coefficients of the equation may
have c common factor greater than 1 even though the entries of the matrix have no common factor. Also,
if the middle coefficient is even, a factor of 2 can be removed from both the numerator and denominator of
the expression given by the quadratic formula. There is a factor of 4 in the discriminant that isn’t seen in the
usual way of writing the solution of the equation.

The calculation of the continued fraction of 2+
√

7 involves only numbers of the form(a +
√

7)/c.
Here are the details:

2 +
√

7 = 4 +

(√
7 − 2

)
1

√
7 − 2

=

√
7 + 2

3
√

7 + 2

3
= 1 +

√
7 − 1

3

3
√

7 − 1
=

√
7 + 1

2
√

7 + 1

2
= 1 +

√
7 − 1

2

2
√

7 − 1
=

√
7 + 1

3
√

7 + 1

3
= 1 +

√
7 − 2

3
3

√
7 − 2

=
√

7 + 2

Part of reason that this form persists through the calculation is thatc divides 7− a2 at each stage.

4. Lagrange’s Theorem. Euler is credited with noticing that a periodic continued fraction
represents the root of a quadratic equation with integer coefficients (which we observed in the last section
without making much of a fuss about it). The converse was proved by Lagrange. One key to his proof is the
property noted in the example. We state it as
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Lemma. If we perform one step in the calculation of the continued fraction of
(

a +
√

D
)
/c with c|D −a2,

then the result has the same form.

Proof. The step consists of identifying the integerq such that

qc < a +
√

D < (q + 1)c

so that
−

√
D < a − qc < c −

√
D

Subtractingq and inverting gives

c
√

D + a − qc
=

c
( √

D + qc− a
)

D − (qc− a)2

The denominator isD − a2
+ 2aqc− q2c2. This is divisible byc sincec|D − a2 and the remaining terms

contain explicit factors ofc. Remove this factor ofc from numerator and denominator to give the lemma.
Although the condition thatc|D − a2 may seem special, it is easy to arrange for any given quadratic

irrational. If numerator and denominator of
(

a +
√

D
)
/c are multiplied by the integerk, we get(

ak +
√

Dk2
)
/(ck) with the new discriminantDk2. For this expression, the desired condition isck|Dk2

−

a2k2, which is equivalent toc|k
(

D − a2
)
. This can always be arranged. For example,k = c will certainly

give this conclusion.
We assumec|D − a2 for the rest of the discussion.
The second main part of Lagrange’s theorem is the idea ofreduction. When we perform a contin-

ued fraction step,a is replaced byqc − a, which is between
√

D, and
√

D − c, andc is replaced by(
D − (qc− a)2

)
/c. If c > 2

√
D, then|qc− a| ≤ c −

√
D and

2
√

D − c <
D − (qc− a)2

c
<

D

c
<

√
D

2

This shows that
∣∣( D − (qc− a)2

)
/c

∣∣ < c. A finite number of continued fraction steps will lead to an

expression withc < 2
√

D. After this bound onc has been attained,|a| <
√

D at all subsequent steps. Only
these could possibly occur in later steps, but these conditions have limited us to afinite set of pairs(a, c).
Additional steps of the continued fraction expansion will eventually repeat one of these values. Since the
continued fraction is completely determined by the number, a single repetition forces the construction to
become immediately periodic.

It has now been established that every quadratic irrational has a continued fraction that is eventually
periodic.
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