Math 574, Lecture 1

Continued Fractions of Numbers, I
Spring 2004

0. Introduction. Continued fractions have a long history. The terminating continued fraction of

a rational number is closely related to the Euclidean Algorithm. This extends to a construction defined for
all real numbers. With suitable conventions, this leads to a representation of real numbers that is unique for
irrational numbers.

Our main concern will be with the use of continued fractions to generated good rational approximations
to real numbers, but we begin with a digression into the role of continued fractions in Algebraic Number
Theory.

Euler was able to show that periodicity in the steps of this construction implied that the number was
the root of a quadratic equation with rational coefficients and Lagrange established the converse. Arithmetic
properties of orders (rings of algebraic integers, not necessarily maximal) in real quadratic fields are closely
tied to continued fractions. This will lead to a proof of a striking new theorem of Joseph Lewittes from a
preprint entitled “Continued Fractions and Quadratic Irrationals”.

1. Representing Real Numbers. Before looking at the continued fraction, let us consider
the familiardecimal expansionof real numbers.

We know how to determine decimal expansions of all real numbers, but afteitiah step (to be
described below) we have a numbewith 0 < x < 1. Theleading decimal digitof x isa = |x| and
X' = X — a is a new quantity with 0< x’ < 1. The decimal expansion is produced by iterating this
construction. More precisely, we start fromwith 0 < x; < 1 and define sequences of integarand real
numbersx; by a; = |X; | andxj+1 = X — & . An easy induction shows that

O0<xi<1l and & €{0,1,2,3,4,5,6,7,8,9}

foralli > 0.
Given a sequencg; ) of decimal digits,one forms the series

> a 107", 1)
i=1

Since theg; are bounded, this series converges. Indeed, it is easily shown that the limit is nonnegative and
bounded by 1. It remains to show that it converges to the numpbesed to generate the sequence. Along

the way, we explain a source of some confusion, that, whesm &l 9, the series converges to 1, although

1 was excluded from the numbers used to generate the sequgen®¥és shall see that it ismndamental
property of representations of real numbers.

Although the limit of the partial sums of a series appears to be the natural to construct a number from
the sequence @, it is more convenient in other cases to define numbers as the intersection of a sequence
of nested intervals. For this to work, the intervals mustbepact Thus, our basic interval should be the
closedinterval[0, 1]. Prescribingy for 1 < i < n restricts the values of the sufh) to an interval of length
10~". Since the intervals are compact, they have a nonempty intersection that is an interval, and since the
lengths approach zero, there cannot be more than one point in the intersection. The selection of the next
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decimal digit consists of dividing the intervgd, 10] into the 10 intervals between consecutive integers in
such a way thax will be contained in the interval of possible sums. Our choice guarantees that our original
numberx is a possible value represented by the decimal expansion, but each infinite decimal expansion
represents a uniqgue number. Two such intervalsiemest disjoint — they are disjoint except that adjacent
intervals have a single endpoint in common. We made the construction of the decimal expansion unique by
selection the rightmost interval when we had a choice, and then all subsegbersbme 0; had we chosen
the other interval, all subsequemtwould be 9.

Since intervals on the real line am®nnected such ambiguities will arise whenever intervals are
partitioned into closed subintervals. For the decimal expansion, numlsersh that 10x is an integer for
some integen have ambiguous representations.

For numbers that are not initially in the interJél 1], first extract the sign of allowing restriction to
positivex. Now, there will bek > 0 with x < 10K. Choose such k and form the decimal expansion of
10 Xx. Insert adecimal point after the firsk digits of this to signify that the first digit is the coefficient of
1051, In this notation, it is conventional to omit leading zero digits to the left of the decimal point, since
they contribute noting to analog of the suf)

2. Continued fractions of Numbers.

The continued fraction expansion is also obtained by an inductive procedure. The inductive step,
starting with a real numbér consists of setting = |&£| andé’ = 1/(£ — a). If £ is an integer, this will be
consider to lead t§’ being thespecial symboloo which causes the process to terminate.

This step leads t§¢’ > 1, but we should turn this into a closed interval by adding endpoints band
If we startin this intervala = | £ ] is apositive integer. This construction leads to the termsg as, a, . . .,
whereag is an arbitrary integer and tlae fori > O are positive integers. Itis customary to indicate that this
sequence arises from the continued fraction algorithm by enclosing it in brackets; @teseparated by
commas, except that the special term (which is special since it is not required to be pasits/&)llowed
by a semicolon.

The function f (x) = n 4 1/x for some fixed integen maps the intervall, oo] into the interval
[n, n+ 1] of numbers whose continued fractions begin withFor each intervalxop, x1], the length of its
image[ f (x1), f(xo)] is xgl — xl_l = (X1 — Xp)/(Xox1). Since bothxg andx; are at least 1 and one is
strictly greater, the image is strictly shorter tHag, x1]. However, more is needed to show that the intervals
defined by initial segments of a continued fraction have lengths approaching zero. To do this, we consider
compositions of these maps. We have

1 nx+1
fxX)y=n+-= i
X X

so this is a special case of theear fractional transformation

ax+b
cx+4d’

Composing two such functions gives

b ’
d(?ﬁd) +Db _a@x+b)+bcx+d)  (@a+box+ (@b+bd)

d(ﬁ;‘iﬁ) Lq C@x+b+dex+d)  (Ca+dox+(cb+dd)’
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so it is again a linear fractional transformation. If the coefficients are written as a matrix

(o)

then the matrix corresponding to the composition is

a b a b
(¢ a) o)
For the special functions that are used to form continued fraction,0, b = ¢ = 1 anda is a positive
integer. In particular, the determinantid. Composingd such terms gives a linear fractional transformation
represented my a matrix of determinantl)X whose entries are nonnegative integers. The slowest growth
of these entries occurs when all= 1, and then the size of the entries in the product are asymptotic to

constant multiples ofk, wherer = (1 + \/5)/2. This shows that the lengths of intervals definedkby

partial quotients have lengths less tf@n 2 for some absolute consta@task — oo.

Thus, each sequence of partial quotients determines a number. The construction of the partial quotients
from the number is given by dividinfl, oo] into the intervaldn, n + 1] and the special valueo. Each
integer greater than 1 belongs to two intervals, but other numbers belong to unique intervals. A value in
[n, n 4+ 1] is written asn 4+ 1/x, son corresponds t& = oo andn + 1 corresponds t& = 1. The number
1 has the string of partial quotients, co), so each integer has a terminating continued fraction.

The image obo under a linear fractional transformation represented by a matrix

a b

c d
isa/c. Since the entries are integers for the matrices appearing in the continued fraction construction, this
is rational. Conversely, if a number is rational, the continued fraction steistly a step of thézuclidean

algorithm. Since this process terminates, every rational has a terminating continued fraction expansion —
indeed, exactlywo terminating continued fraction expansions.

3. Periodic Continued fractions. After the terminating expansions, the next thing to consider
are the periodic expansions. If a continued fraction expansion of a nunibeurely periodic, the period
gives a linear fractional transformation such that

= ax+b
T cx+4d’

This leads to equatioox? + (d — a)x — b = 0. This is a quadratic equation with integer coefficients and
discriminant(d — a)2 + 4bc = (a + d)? — 4(ad — bc). An efficient way to calculate the matrix that is a
product of the special matrices
a 1
o= (3 0)

is to start by writing an identity matrix. Then as you read the numaefi®m the continues fractiofrom

left to right, introduce a new columan the left that isa; times the current first column plus the current
second column. This works because this isdbeimn operation giving the first column after multiplying

by Mg while the second column is the old first column. The first two columns of this array is the desired
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matrix. Thea; may be written above the column that it introduces to serve as a reminder of the steps in the
calculation. For examplé4, 1, 1, 1] leads to

1114
1495410
321101
and the equation
= 14x + 9
3 +2

expands to 82 — 12x — 9 = 0. Removing the common factor of 3 in the coefficients gixes 4x — 3 = 0,
whose roots are 2 /7.

Since the determinaaid — bc = +1 in this case, this discriminant has the fofad)2 +4. Although
this appears to be special — excluding numbers like 7 — we found that the coefficients of the equation may
have ¢ common factor greater than 1 even though the entries of the matrix have no common factor. Also,
if the middle coefficient is even, a factor of 2 can be removed from both the numerator and denominator of
the expression given by the quadratic formula. There is a factor of 4 in the discriminant that isn’t seen in the
usual way of writing the solution of the equation.

The calculation of the continued fraction of2+/7 involves only numbers of the fori@a + +/7)/c.
Here are the details:

2+ﬁ=4+(ﬁ—2)

1 J7+2
Vi-2 3
7 —
Vit2 _ 14 V7-1
3 3
3 V7+1
Vi-1 2
7 —
VT+1 14 V7-1
2 2
2 J7+1
V-1~ 3
7 —
V7+1 - V7-2
3 3
3
=V7+2
J7-2
Part of reason that this form persists through the calculation istthiatdes 7— a? at each stage.
4. Lagrange’s Theorem. Euler is credited with noticing that a periodic continued fraction

represents the root of a quadratic equation with integer coefficients (which we observed in the last section
without making much of a fuss about it). The converse was proved by Lagrange. One key to his proof is the
property noted in the example. We state it as
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Lemma. If we perform one step in the calculation of the continued fraction of ( a++D ) /c withc|D —a?,
then the result has the same form.

Proof. The step consists of identifying the integesuch that

qc<a++D < (q+ 1c

so that
—vVD<a—-qc<c—+vD

Subtractingy and inverting gives

c _¢(v/D+qc—a)
VD+a—-qc D-(qgc—a)?

The denominator i® — a® + 2aqc— g2c2. This is divisible byc sincec|D — a? and the remaining terms
contain explicit factors of. Remove this factor af from numerator and denominator to give the lemma.
Although the condition that|D — a? may seem special, it is easy to arrange for any given quadratic

irrational. If numerator and denominator Qh+\/5)/c are multiplied by the integek, we get
(ak + +/Dk2 )/(ck) with the new discriminanbk?. For this expression, the desired conditionksDk? —

a®k?, which is equivalent t<m|k( D — a? ) This can always be arranged. For examkgle; ¢ will certainly
give this conclusion.

We assume|D — a? for the rest of the discussion.

The second main part of Lagrange’s theorem is the ideadafction. When we perform a contin-

ued fraction stepa is replaced byqc — a, which is between/D, and+/D — ¢, andc is replaced by
(D —(qc—a)?)/c. If c > 2¢/D, then|qc — a] < ¢ — +/D and

D-—(@c—a?2 D D
2\/B—C<¥<E<§

This shows that( D - (gc— a)z)/c\ < c. A finite number of continued fraction steps will lead to an

expression witlt < 24/D. After this bound ort has been attainet)| < +/D at all subsequent steps. Only
these could possibly occur in later steps, but these conditions have limited tisite aet of pairs(a, c).
Additional steps of the continued fraction expansion will eventually repeat one of these values. Since the
continued fraction is completely determined by the number, a single repetition forces the construction to
become immediately periodic.

It has now been established that every quadratic irrational has a continued fraction that is eventually
periodic.
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