- Week 7 Wrapup of semisimple algebras, Brauer Group and Group representations Jacobson II: 4.5-4.7, 5.1-5.3
 - 1. The statements below will prove: Let K be a field and let D_1, D_2 be division algebras over K of dimensions n_1, n_2 (the centers may be larger than K). If n_1, n_2 are relatively prime, then $D_1 \otimes_K D_2$ is a division algebra. (a generalization of part of Jacobson II 4.6.9 from problem set 6)
 - a) Show that for any simple K-algebras A_1, A_2 there is a simple algebra B and a surjective K-algebra homomorphism $A_1 \otimes A_2 \to B$. (Hint: take the quotient by maximal two-sided ideal of $A_1 \otimes A_2$).
 - b) For division algebras of finite dimension over K consider an algebra B constructed in a) as a vector space under $D_1 \otimes 1$. Show that $dim_K B = dim_{D_1} B dim_K D_1 \le dim_K D_1 dim_K D_2$.
 - c) If $dim_K D_1$ is relatively prime to $dim_K D_2$ show that $dim_K B = dim_K D_1 dim_K D_2$ so that $D_1 \otimes_K D_2$ is a simple algebra.
 - d) Under the assumption of c), let L be an irreducible ideal of the simple ring $A = D_1 \otimes_K D_2 = M_r(E)$, where the division algebra $E = (End_A(L))^{opp}$. Then $A = L^r$ as an A-module. L is a module over $D1 \simeq D_1 \otimes 1$ and $D_2 \simeq 1 \otimes D_2$. Compute the dimension of A as vector space over D_1 and D_2 and show that r divides the dimensions of D_1, D_2 as vectors spaces over K. Conclude that if these dimensions are relatively prime, then r = 1, establishing the statement at the beginning of this problem.
 - 2. Let G be a finite group and consider representations of G on finite dimensional complex vector spaces.
 - a) Let V, W be irreducible representations of G. Show that the decomposition of $V^* \otimes W$ into irreducible representations contains exactly 1 copy of the trivial representation of G if V, W are isomorphic, and 0 otherwise (see previously assigned Jacobson II 5.3.7).
 - b) Show that the element $t = \sum_{g \in G} g$ in $\mathbb{C}[G]$ is in the center of the group algebra, hence by Schur's lemma acts by a scalar on any irreducible representation V. Show that if the subspace $W = tV \subset V$ is nonzero, then V is the trivial representation. Show that $\chi_V(t) = 0$ if V is not the trivial representation, and $\chi_V(t) = |G|$ if V is the trivial representation.

- c) Show using a),b) that if V, W are irreducible representations then $\chi_{V*\otimes W}(t)$ is 0 or |G| according as V, W are not isomorphic or are isomorphic. Deduce that the characters of irreducible representations of G form an orthonormal family of functions with respect to the pairing $\langle \phi, \psi \rangle = (1/|G|) \sum_{g \in G} \phi(g^{-1}) \psi(g)$.
- d) Show that if a representation V of G decomposes as a sum of irreducibles $V = \bigoplus m_i V_i$ with V_i, V_j not isomorphic when $i \neq j$, then $\langle \chi_V, \chi_V \rangle = \sum m_i^2$. Show that V is irreducible if and only if $\langle \chi_V, \chi_V \rangle = 1$.
- e) Show that if $W = \oplus m_i V_i$ is the decomposition of W into distinct irreducibles, then $\langle \chi_W, \chi_{V_i} \rangle = m_i$. This, together with d) allows one to check from characters if a representation is irreducible, and if so how many times it appears in another representation.
- 3. The complex representations of S_4 , the symmetric group on four letters.
 - a) Find the conjugacy classes in S_4 , find all normal subgroups, and determine how many irreducible complex representations S_4 has.
 - b) Show that the group G of rotations preserving a cube permutes the 4 diagonals joining opposite corners of the cube and that this gives an injective group homomorphism from G to S_4 . Show that G acts transitively on the 8 vertices of the cube and compute the stabilizer in G of a vertex. Show that the group G of rotations is isomorphic to S_4
 - c) Show that the group G of rotations of the cube maps onto the group of permutations of the lines joining centers of opposite faces and that S_3 is a quotient of G. Use this to find some irreducible representations of S_4 and to determine the dimension of the remaining irreducible representations.
 - d) Show that the natural representation of G as linear maps of \mathbb{R}^3 is irreducible
 - e) Let W be the representation of G on the vector space of complex functions on the faces of the cube. Compute the character of W and express W as a sum of irreducible representations.
- 4. Let G be a subgroup of the group $GL(n, \mathbb{C})$ of invertible $n \times n$ complex matrices. Suppose that $\sum_{g \in G} trace(g) = 0$. Show that $\sum_{g \in G} g = 0$.