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Colimits and limits of Functors

We considered a general construction in class that began with a category C (which
will have objects we are interested in) and functor F from another category J to C (which
will often be thought of as indexing the objects F (j) by objects in J).

Construct a new category D in which the objects consist of an object C of C together
with morphisms in C, say φj : F (j)→ C for each object j in J . We further require that if
ψ : j → k is a morphism in J then φj = φk ◦ ψ. We think of an object of D as an object
C of C together with a compatible family of morphisms from F (j) to C. The reader may
prefer to picture such objects via diagrams, but in these notes we will not draw a single
commutative diagram, choosing instead to name the morphisms and state explicitly which
compositions equal which other morphisms.

The morphisms of such an object D to another object D′ specified by an object C ′ of
C together with morphisms φ′j : F (j)→ C ′ is a morphism η : C → C ′ such that φ′j = φj ◦η.
Two such morphisms D → D′, D′ → D′′ clearly compose to give a morphism, and D is a
category.

We call an initial object of D a colimit of the functor F . Colimits occur so often that
many have special names, which will be described in the remarks below. A colimit consists
of an object colim(F ) in C together with morphisms φj : F (j)→ colim(F ) for each object
in J such that whenever ψ : j → k is a morphism in J then φj = φk ◦ψ. In brief, to give a
compatible family of morphisms to any object is to give a morphism of the colimit object
to the object.

We often abuse terminology and also refer to the object C in C underlying the initial
object as the colimit of F , but of course we need to remember that it comes with the
morphisms φj : F (j)→ C which define the object in D.

Examples of colimits:

1. Suppose that J is the empty category with no objects and no morphisms. Then a
functor from J to C contains no information. The category D above is isomorphic to the
original category C, so the limit of such a functor is an initial object of C.

2. Suppose that J is a category with a single object and a single morphism. Then
a functor F from J to C is a choice of an object C0 in C. An object in D is an object
C of C together with a morphism φ0 : C0 → C. A morphism in D between objects
φ0 : C0 → C, φ′0 : C0 → C ′ is a morphism ψ : C → C ′ such that φ′0 = ψ ◦ φ0. Hence the
colimit of this functor F is given by an object colim(F ) which is an object of C furnished
with a morphism φ : C0 → colim(F ) such that any morphism of C0 to an object of C factors
uniquely through φ. The colimit in this case is given by the morphism 1C0 : C0 → C0, so
it always exists, even if it is not very interesting.

3. Suppose that J is the discrete category of a set of objects where the only morphisms
are the identity morphism of each object to itself. A functor F from this J to C is a choice



of objects Cj of C, indexed by the objects of J . The category D then consists of objects
C of C together with morphisms φj : Cj → C. A colimit for this functor is called the
coproduct of the objects Cj . If it exists it is an object coprod(Cj) together with morphisms
φj : Cj → C such that to give morphisms from Cj to an object C ′ is to give a morphism
from coprod(Cj) to C ′. The notation

∐
j∈J Cj is often used for the coproduct in a category.

The categories J in 1., 2. are discrete, so are special cases of coproducts. In particular,
if the empty coproduct exists it is an initial object in C. For more complicated J the
coproduct may not exist. We showed in class that the disjoint union of sets together with
the inclusions of each set into the disjoint union is the coproduct in the category of sets.

4. The coproduct of an arbitrary set of abelian groups exists in the category of abelian
groups. We write abelian group laws as +, abelian group identities as 0. Given abelian
groups Aj let ⊕jAj denote the abelian group of functions on the index set of objects in J
which have f(j) ∈ Aj and for all but finitely many values of j the value f(j) is the group
identity 0 of Aj , with the abelian group law given by addition of function values. The
morphisms φj : Cj → ⊕jCj are given by sending an element c of Cj to the function which
takes value c a j and 0 elsewhere. This satisfies the universal property for a coproduct,
since given any set of morphisms φ′j : Aj → A′ of abelian groups we can define a morphism
η : ⊕Aj → A′ by sending a function f(j) on the index set of objects to the sum of φ′j(f(j))
over the finitely many j for which f(j) is not the identity element 0 ∈ Aj . This finite
sum of elements in an abelian group is defined and independent of the order in which the
sum is made. We have η(f1 + f2) =

∑
j φ
′
j(f1(j)) + φ′j(f2(j)) = η(f1) + η(f2) since φ′j

are homomorphisms with values in the abelian group A′. Further, η is the unique such
homomorphism from ⊕Aj → A′ satisfying η ◦ φj = φ′j .

5. Let J be the category formed by a partially ordered set J of objects with Mor(j, k)
containing a single morphism if j ≤ k and empty otherwise, with the obvious composition
law. A functor F from this category to a category C is given by objects Cj indexed by the
partially ordered set, together with morphisms φjk : Cj → Ck for j ≤ k such that φjj is
the identity morphism and φkl ◦ φjk = φjl when j ≤ k ≤ l. Such objects are often called
a direct system of objects and morphisms. The colimit of this functor is called the direct
limit of the system Cj , usually denoted by lim

→
Cj . To give morphisms from the objects Cj

to an object C ′ which are compatible with the ordering is equivalent to giving a morphism
of lim
→
Cj to C ′.

For example, in the category of sets suppose that we have a directed system ordered
by inclusion. The direct limit is just the union of the sets. In the category of groups the
direct limit of a direct system Gj of groups can be constructed as the set G of functions
f on the partially ordered set J such that f(j) is in Gj , and for j ≤ k, f(k) = φjk(f(j)).
The group structure is inherited from the fact that the values of such functions at a point
are in a group. There are homomorphisms ψj : Gj → G given by assigning an element
a of Gj to the function which has value at k equal to φjk(a) at j ≤ k and the identity
element of Gk otherwise. The universal property to be checked is that if αj : Gj → H
is a compatible family of group homomorphisms, then there is a unique homomorphism
η : G→ H such that αj = η ◦ ψj . The homomorphism is given by η(f) = αj(f(j)), which
is well defined since αk ◦ φjk = αj when j ≤ k by the compatibility of the direct system



homomorphisms. For example the direct limit of the groups of pn roots of unity ordered
by inclusion is the group of all p-power roots of 1. The direct limit of the system Z/pjZ
with homomorphisms φjk given by sending 1 to pk−j is the group Z(p∞) of the homework
problem I.4.7 in Hungerford (and isomorphic to the group in the previous sentence).

6. Suppose that J has two objects and two morphisms from the first object to the
other. To give a functor F from J to C is to give objects C1, C2 of C and two morphisms
α, β : C1 → C2. The colimit of this functor is an object C furnished with morphisms
φ1 : C1 → C, φ2 : C2 → C such that φ2 ◦ α = φ2 ◦ β = φ1 (hence φ1 is determined by φ2)
such that for any φ′1 : C1 → C ′, φ′2 : C2 → C ′ such that φ′2 ◦ α = φ′2 ◦ β = φ′1 there is a
unique homomorphism γ : C → C ′ with γ ◦ φi = φ′i for i = 1, 2. In other words, to give a
morphisms of C2 to an object C ′ such that compositions with α and β lead to the same
result is to give a homomorphism of the colimit to C ′. This colimit is called the coequalizer
of the two morphisms.

In the case that C1, C2 are groups and α, β group homomorphisms the coequalizer of
α, β would be a group G together with homomorphisms φ2 : C2 → G such that φ2 ◦ α =
φ2 ◦ β such that G has a morphism to any other group that the C2 map to in such a way
that results of composing with α, β are the same. For example, to construct the coequalizer
when β is trivial is to give a group G, and a homomorphism of C2 to G which is trivial
on the image of α, and universal in the sense that any other homomorphism of C2 to a
group which is trivial on the image of α factors through G. If N is the normal subgroup
generated by the subgroup α(C1) in C2 then the quotient group C2/N together with the
quotient map π : C2 → C2/N satisfies the univeral property. This group is usually called
the cokernel of the homomorphism α.

Limits of Functors

If we start with a functor F from J to C there is a functor F op from J op to Cop
obtained by reversing the arrows in diagrams describing the functorial nature of F . The
colimit of F op is usually called the limit of the functor F . This is equivalent to defining
the limit of F to be a terminal object of the category with objects consisting of objects C
of C together with morphisms φj : C → F (j) such that when ψ : j → k then ψ ◦ φj = φk.
As before the morphisms of such objects are morphisms of C to C ′ compatible with the
φj , φ

′
j . Hence a limit of the functor F is given by an object lim(F ) of C, together with

morphisms πj : lim(C) → F (j) such that any compatible morphisms C ′ → F (j) come
by composing a morphism to lim(F ) with the πj . In brief, to give a compatible family of
morphisms from an object is to give a morphism to the limit object. The notion is dual
to that of the earlier sections, and all examples there can be dualized.

7. The standard example is to take a discrete category J , that is an indexed set
of objects Cj . If the limit exists it is called the product of the objects. The universal
property of the product is that given morphisms of an object C ′ to all Cj , there is a unique
morphism from C ′ to the product

∏
Cj such that the morphisms are the composition of

this morphisms with the projections.
As expected, the usual product of sets is the categorical product in the category Set.

For categories in which the objects are sets with extra structure, it is often the case that



the product is the product of the sets endowed with extra structure. The category of cyclic
groups does not have products in general.

8. The dual of the notion in section 5. is the inverselimit of an inverse system
(sometimes called the projective limit). It is traditional to take the opposite of the category
J given in that section, that is an inverse system is a family of objects Cj together with
morphsims φij : Cj → Ci for i ≤ j such that φjj is the identity and φik = φij ◦ φjk.
The inverse limit lim

←
Cj is an object together with morphisms ψk : lim

←
Cj → Ck such that

φ)ij ◦ ψj = ψi when i ≤ j. Any other such compatible family of morphsims to the inverse
system is obtained via a homomorphism to the inverse limit followed by the ψk.

In the category of groups the inverse limit can be constructed by taking the subgroup of
the product consisting of tuples (. . . , cj , . . .) where the obivous relation is required between
cj , ck when j ≤ k. The morphisms to the groups in the inverse system are the projections.

For example, the case of the directed system of groups Z/pjZ with homomorphisms
φij given by reduction modulo pi gives a limit denoted by Zp called the p-adic integers.
Note that contrary to the example in section 5 this group has no elements of finite order.

9. The dual of the objects in section 6. are called the equalizer of the morphisms α, β,
which is an object C together with a morphism φ : C → C1 such that α ◦ φ = β ◦ φ which
satisfies a univeral property among such objects. To give a morphism to C1 for which
compositions with α, β are equal is to give a morphism to the equalizer. Foe example,
in the category of groups the equalizer of a homomorphism α : G1 → G2 and the trivial
homomorphism is the kernel of α, furnished with the inclusion in G1. Any homomorphism
to G1 which composed with α is trivial is in the kernel of α.


