Mathematics 551 Algebra Fall 2006

Dimension of spaces of intertwining operators

Let F be a field and let V,W be finite dimensional vector spaces over F. Suppose
that L € Endp(V),L" € Endp(W). A vector space map ¢ : V — W intertwines L and
L’ if and only if ¢L = L’¢. The set of intertwining maps is a vector space Iy, s over
F. For example if V.= W, L = L' then I, 1 is the vector space of endomorphisms of V'
commuting with L.

We can recast the definition of I, - in terms of modules over a PID. Let R = F[z]
be the PID of polynomials in x with coefficients in F'. We can consider V' as an R—module
by defining xv = Lv. Similarly W is an R-module by defining zv = L’v. Then the vector
space I, - equals Homp(V, W), so it may be analyzed by module theoretic techniques.

Since V, W are torsion modules over R there exist polynomials g;, h; € R such that
V ~®R/(9;), W ~ ®R/(hj). By the fact that finite direct sums of modules are the same
as finite products of that module and the defining properties of direct sums and products
we have Homp(V, W) ~ &, ;Homp(R/(g;), R/h;) so the problem is reduced to computing
the vector space Hompg(R/(g:), R/(h;)).

The homomorphisms of a cyclic module R/g to any module N are determined by the
image of a generator, which can be taken to be any element of n € N such that gn = 0.

Lemma. Let d be the greatest common divisor of g;,h; so that (g;,h;) = (d). Then
Hompg(R/(9:), B/ (h;)) =~ (h;/d)R/(h;).

Proof: The elements of n € R/(h;) such that g;n = 0 are represented by polynomials p(x)
modulo h; which satisfy that p(x)g; is a multiple of h;. Those p(x) are those which are a
multiple of h;/d.

Since (h;/d)R/(h;) is the kernel of the quotient map from R/(h;) to R/(h;/d) it has
dimension as a vector space over F' which equals deg(h;) — deg(h;/d) = deg(d). This
shows that

dimFIL,L’ = Z deg ng(gi, h])

2]

In the special case that V = W, L = L’ we obtain a formula for the vector space of all
linear maps commuting with L.

Theorem. Let V' be an n-dimensional F-vector space and let L be an F-linear map of V'
to itself. Then dimply, 1 = > 7 (2n — 2i + 1)deg g;

Proof: The previous result gives that the dimension is ), jdeg ged(gi, g5). Since g;
dividesA gi+1 this greatest common divisor is gmini,;. The sum ZZ j deg gmini,; equals
>, (37i— deg gi + >, deg g;) in which the term deg gj, appears (n —k+1) + (n — k)
times.



For example, all polynomials in L. commute with L, forming a subspace of dimension
equal to the degreed of the minimal polynomial of L. The full space of commuting trans-
formations exceeds this dimension by a positive amount if and only if some invariant factor
g; for j < m is not constant, that is if and only if the characteristic polynomial has degree
greater than the minimal polynomial. Hence the characteristic polynomial of L equals the
minimal polynomial if and only if any transformation commuting with L is a polynomial
in L.

For a second example we determine the matrices commuting with the matrix

0
0

N = O

—1

O O =

Since this matrix is in rational canonical form the invariant polynomials are gy =
r — 1,90 = (r — 1)? so that the dimension of the space of matrices commuting with
this one is (6-4+1)+(6-6+1)2=5. The proof of the theorem above shows that the linear
transformations commuting with the transformation defined by the matrix above are F[x]-
module endomorphisms of F[z]/(x — 1) ® F[z]/(x — 1)2. Using the basis 1;1,z we see
that a module map must map 1 € F[z]/(z — 1) to an element of form (a,b(z — 1)), and
1 € Flz]/(x — 1)? to an element of the form (c,d + ex) and hence x to (¢, —e + (d + 2¢)x).
Thus the matrices commuting with the matrix above are those of the form

a —b b
c d e
¢ —e d-+2e



