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Dimension of spaces of intertwining operators

Let F be a field and let V,W be finite dimensional vector spaces over F . Suppose
that L ∈ EndF (V ), L′ ∈ EndF (W ). A vector space map φ : V → W intertwines L and
L′ if and only if φL = L′φ. The set of intertwining maps is a vector space IL,L′ over
F . For example if V = W,L = L′ then IL,L′ is the vector space of endomorphisms of V
commuting with L.

We can recast the definition of IL,L′ in terms of modules over a PID. Let R = F [x]
be the PID of polynomials in x with coefficients in F . We can consider V as an R–module
by defining xv = Lv. Similarly W is an R–module by defining xv = L′v. Then the vector
space IL,L′ equals HomR(V,W ), so it may be analyzed by module theoretic techniques.

Since V,W are torsion modules over R there exist polynomials gi, hj ∈ R such that
V ' ⊕R/(gi),W ' ⊕R/(hj). By the fact that finite direct sums of modules are the same
as finite products of that module and the defining properties of direct sums and products
we have HomR(V,W ) ' ⊕i,jHomR(R/(gi), R/hj) so the problem is reduced to computing
the vector space HomR(R/(gi), R/(hj)).

The homomorphisms of a cyclic module R/g to any module N are determined by the
image of a generator, which can be taken to be any element of n ∈ N such that gn = 0.

Lemma. Let d be the greatest common divisor of gi, hj so that (gi, hj) = (d). Then
HomR(R/(gi), R/(hj)) ' (hj/d)R/(hj).

Proof: The elements of n ∈ R/(hj) such that gin = 0 are represented by polynomials p(x)
modulo hj which satisfy that p(x)gi is a multiple of hj . Those p(x) are those which are a
multiple of hj/d.

Since (hj/d)R/(hj) is the kernel of the quotient map from R/(hj) to R/(hj/d) it has
dimension as a vector space over F which equals deg(hj) − deg(hj/d) = deg(d). This
shows that

dimF IL,L′ =
∑
i,j

deg gcd(gi, hj)

In the special case that V = W,L = L′ we obtain a formula for the vector space of all
linear maps commuting with L.

Theorem. Let V be an n-dimensional F-vector space and let L be an F-linear map of V
to itself. Then dimF IL,L′ =

∑n
1 (2n− 2i+ 1)deg gi

Proof: The previous result gives that the dimension is
∑
i,j deg gcd(gi, gj). Since gi

divides gi+1 this greatest common divisor is gmin i,j . The sum
∑
i,j deg gmin i,j equals∑

j(
∑j
i=1 deg gi +

∑n
i=j+1 deg gj) in which the term deg gk appears (n− k+ 1) + (n− k)

times.



For example, all polynomials in L commute with L, forming a subspace of dimension
equal to the degreed of the minimal polynomial of L. The full space of commuting trans-
formations exceeds this dimension by a positive amount if and only if some invariant factor
gj for j < n is not constant, that is if and only if the characteristic polynomial has degree
greater than the minimal polynomial. Hence the characteristic polynomial of L equals the
minimal polynomial if and only if any transformation commuting with L is a polynomial
in L.

For a second example we determine the matrices commuting with the matrix 1 0 0
0 0 1
0 −1 2

 .

Since this matrix is in rational canonical form the invariant polynomials are g1 =
x − 1, g2 = (x − 1)2 so that the dimension of the space of matrices commuting with
this one is (6-4+1)+(6-6+1)2=5. The proof of the theorem above shows that the linear
transformations commuting with the transformation defined by the matrix above are F [x]-
module endomorphisms of F [x]/(x − 1) ⊕ F [x]/(x − 1)2. Using the basis 1; 1, x we see
that a module map must map 1 ∈ F [x]/(x − 1) to an element of form (a, b(x − 1)), and
1 ∈ F [x]/(x− 1)2 to an element of the form (c, d+ ex) and hence x to (c,−e+ (d+ 2e)x).
Thus the matrices commuting with the matrix above are those of the form a −b b

c d e
c −e d+ 2e

 .


