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Counting the number of orbits in a group action

The lemma of Cauchy, Frobenius and Burnside

Let a finite group G act on a finite set X and let X/G be the set of orbits. The
formula to be proved is that the number of orbits is the average number of fixed points
taken over the elements of the groups:

|X/G| = 1
|G|

∑
g∈G
|Xg|

where Xg = {x ∈ X|gx = x} is the fixed point set of g.
This formula is often called Burnside’s lemma (1900), even though it was known to

Cauchy (1845) and Frobenius (1887). Consequently, it is sometimes referred to as the
Cauchy-Frobenius lemma or“the lemma which is not Burnside’s”.

The proof follows from the fact that the orbit of x ∈ X is the coset space of Gx,
stabilizer subgroup of x. Consider the set {(x, g) ∈ X×G|gx = x}. The cardinality of this
set can be computed by summing the number of elements with second coordinate g, that
is
∑
g∈G |Xg|. On the other hand, summing over elements with first coordinate x gives∑

x |Gx|. Since the order of the orbit Gx of x under G is |G|/|Gx| we have∑
g∈G
|Xg| =

∑
x∈X
|G|/|Gx|.

The right hand summands |G|/|Gx| are constant on orbits and sum to |G| on each orbit.
This establishes the formula.

Note that conjugation of the fixed point set Xg by h equals the fixed point set Xhg.
In applications of the formula, the summands over G are constant on conjugacy classes.

Traditional examples are to coloring problems, that is the set X is the set of functions
f from a G-set Y to a set C (such is function is thought of as coloring y by f(y)). Note that
Xg in this example depends only on the number of cycles of g considered as a permutation
of the set Y : the cycle orbits all have the same color, and can be colored independently.
Hence if g is a product of k disjoint cycles when acting on Y , Xg = |Y |k.

Example: Suppose that beads of n colors are available to make a necklace of 7 beads
by equally spacing beads on a circle. How many truly distinct such necklaces can be made
if we regard necklaces to be colored the same if a rigid motion in 3-space takes one to the
other.

We may consider this problem as counting the number of ways to color the vertices of
a regular 7-gon centered at the origin when colorings in the same orbit under the dihedral
group are considered the same. Apply the lemma above to the set X of colorings of the
regular 7-gon by n colors, a set with n7 elements. The number of orbits is the average
number of fixed points. The identity element of D7 fixes n7 elements (it is a product of 7
1-cycles). The 7 reflections in D7 are all conjugate and reflection in the x-axis fixes the n4

colorings where the 4 vertices in the upper half plane are colored arbitrarily and mirrored



to color the vertices below (a reflection is a product of 3 2-cycles and 1 1-cycle). The 6
elements of D7 of order 7 (the nontrivial rotations ) fix only the n colorings with all colors
the same (such a rotation permutes all vertices cyclically). So the average number of fixed
points is (n7 + 7n4 + 6n)/14, giving that there are (n7 + 7n4 + 6n)/14 such necklaces.

Similarly, to count colorings of the regular tetrahedron up to rotations we use that
the set of rotations of the regular tetrahedron centered at the origin is a group isomorphic
to the alternating group A4 (the 4 lines joining a vertex to the midpoint of an opposite
edge are permuted) of order 12. So the orbits in the set of n4 possible face colorings are
the average number of fixed points. The rotations of the tetrahedron consist of 1 identity
fixing all n4colorings, 8 order 3 rotations by ±2pi/3 around an axis joining a vertex to the
central point of opposite faces, fixing n2 colorings, 3 order 2 rotations about axes joining
midpoints of opposite edges, fixing n2 colorings. So the average is (n4 + 8n2 + 3n2)/12 =
(n4 + 11n2)/12.


