
Mathematics 551 Algebra Fall 2006

Brief notes on adjoint functors

“Perhaps the most successful concept of category theory is that of adjoint functor.”
Joy of Cats by Adamek, Herrlich and Strecker, page 394

There are several different ways to define adjoint functors. The purpose of these notes
is to give a light introduction to the concept. For examples of how heavy the going can
become in this subject refer to Chapter V of the tome quoted from above.

We begin with one definition and then develop alternate characterizations.

Let F be a functor from category C to D.

Definition. The functor F has a left adjoint if for each object D of D the functor assigning
to an object C of C the set MorD(D,F (C)) is a representable functor from C to the category
of sets.

Observe that for fixed object D of D the assignment of an object C of C to the
set the set MorD(D,F (C)) is functorial in C : if φ : C → C ′ is a morphism in C then
composition with the morphism F (φ) : F (C) → F (D) maps the set MorD(D,F (C)) to
MorD(D,F (C ′)).

1. The forgetful functor from the category of groups to the category of sets has a left
adjoint, since for each set X the functor sending a group G to MorSet(X,G) is repre-
sented by the free group on the set X. More generally, a functor from a category to
the category of sets has a left adjoint if and only if there exists a free object in the
category attached to each set in the sense of Hungerford Definition I.7.7.

2. Let’s determine when the constant functor from a category C to a category D with one
object D and one morphism has a left adjoint. This is true if and only if the functor
assigning an object of C to the one element set MorD(D,F (C)) is representable. This
holds if and only if there is an object C0 in C such that MorC(C0, C) is a one element
set, that is there is a unique morphism from C0 to any other object in C. Thus the
constant functor to a 1 object, 1 arrow category has a left adjoint if and only if there
is an initial object in the category.

3. Any functor F from C to D which gives an equivalence of categories has a left adjoint,
since if G is the functor from D to C such that G ◦ F and F ◦ G are naturally
isomorphic to the relevant identity functors we can represent the functor assigning
to an object C of C the set MorD(D,F (C)) by the object G(D) (apply the functor F
to morphisms in Mor(G(D), C) to obtain a morphism in Mor(FG(D), F (C)) and use
that FG is naturally isomorphic to the identity functor). The same logic show that
in this situation the functor G has a left adjoint.



4. Let C be the category formed from a partially ordered set S and such that MorC(a, b)
is a one element set if a ≤ b and empty otherwise. Let D be the category formed from
another partially ordered set T . A functor F from C to D is just an order preserving
map which will also be noted by F from the set S to T . Such an F has a left
adjoint if and only if for each element d ∈ T the functor assigning c to Mor(d, F (c))
is representable, that is there is an element G(d) in S such that MorD(d, F (c)) is
bijective with MorC(G(d), c). This translates to: for each d ∈ T there is an object
G(d) ∈ S such that for all c ∈ S we have d ≤ F (c) if and only if G(d) ≤ c. If so, the
set of all c ∈ S such that d ≤ F (c) clearly has smallest element G(d), and conversely
if this set has a smallest element F has a left adjoint. In this example, the functors
having left adjoints are just those for which there is a smallest element among the set
of c with F (c) ≥ d. This example overlaps with a previous one when T is a 1 element
partially ordered set, for then F has a left adjoint if and only if S has a minimal
element.

Notice that if F has a left adjoint, then we obtain for each object D of D an object
G(D) of C which represents the functor in the definition, so in particular MorC(G(D), C) is
bijective with MorD(D,F (C)). This assignment G is a functor from D to C since if g : D →
D′ is a morphism of D we obtain a map of sets Mor(D′, F (C))→ Mor(D,F (C)) given by
composing on the right with g. By the definition ofG we have a map of sets Mor(GD′, C)→
Mor(GD,C). Take C = G(D′) and construct an element of Mor(GD,GD′) by taking the
image of the identity morphism of G(D′) under this map. This gives a morphism G(g), and
G is a functor. We call G the left adjoint of F . In particular, MorC(G(D), C) is bijective
with MorD(D,F (C)) which is reminiscent of the adjoint of a linear map with respect to a
bilinear form.

This formulation leads to an alternate definition of adjoint functors.

Definition. Functors F from a category C to a category D and G from D to C are
adjoints if the two functors from C × Dop to the category of sets given by Mor(D,F (C))
and Mor(G(D), C) are naturally isomorphic.

We say that G is the left adjoint of F and that F is the right adjoint of G.

5. Consider the categories FIELDS of fields and D of commutative integral domains
with only injective ring homomorphisms allowed, with the functor F assigning to a
field K the domain K ( a type of forgetful functor). Note that ring maps of fields to
domains are always injective. The left adjoint G to F (if it exists) would be such that
that MorD(R,F (K)) is bijective with MorFIELDS(G(R),K) for every field K and
commutative domain R. Note that any injective homomorphism of a commutative
domain R to a field K extends to the fraction field FF (R) (since all nonzero elements
of R are mapped to invertible elements in K), so that this suggests that the left adjoint
to the functor F is the fraction field functor FF assigning to every commutative
domain its fraction field.

Several of our previous constructions are examples of adjoint functors. Generally
constructions involving universal objects are connected to adjoint functors.



6. The forgetful functor F from the category of commutative monoids to the category of
abelian groups has the Grothendieck group functor as its left adjoint.

7. The functor which assigns to a ring R its group of invertible elements R∗ has a left
adjoint given by the group ring functor assigning to a group G its group ring Z[G].

We end with one reason adjoint functors are useful.

Proposition. A functor which has a left adjoint preserves limits in a category. A functor
which has a right adjoint preserves colimits in a category.

Proof. We prove the first statement, the other is dual. Let C,D be categories and F a
functor from C to D which has a left adjoint G. Let J be an index category and T a functor
from J to C. Recall that the limit of this functor is an object limT of C with the property
that to give a morphism from an object C to limT is the same as giving a morphism
from C to T (J) for each object J of J which is compatible with the morphisms in J . In
particular, since F has a left adjoint MorD(D,F (T (J)) is bijective with MorC(G(D), T (J)).
To give compatible morphisms from D to F (T (J) for all J is to give a morphism of D of
D to limF ◦ T . On the other hand to give a compatible family of morphisms from G(D)
to T (J) for all J is to give a morphism from G(D) to limT . Using the bijections coming
from the adjoint property shows that F (limT ) is isomorphic to limF ◦ T .

For example, this implies in example 7. that the units of a product of rings R1 ×R2

is the product of the unit groups R∗1 × R∗2 since the product of objects is an example of
the limit construction. Similarly the free group on a disjoint union of two sets X1, X2 is
the coproduct of the free group on X1 with the free group on X2.

We will see more interesting examples later


