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Math 551 – Algebra – Fall 2000

A. Groups

1. Definition and examples.

Definition. A group is a set G together with a binary operation G×G→ G, written as
multiplication, such that

(1) The operation is associative: g(hk) = (gh)k for all g, h, k ∈ G;

(2) There exists 1 ∈ G such that g1 = 1g = g for all g ∈ G;

(3) For every g ∈ G there is g−1 ∈ G such that gg−1 = g−1g = 1.

1a. Symmetric groups

Ex. A. Let X be any set. A permutation of X is a bijection σ : X → X, i.e., a mapping on X
which is one-to-one and onto X. Let

ΣX = {σ : X → X |σ is a permutation of X}.

For σ, τ ∈ ΣX define στ = σ ◦ τ , the composite of σ and τ . Also let 1X be the identity
mapping 1X(x) = x, x ∈ X, and for each σ ∈ ΣX , let σ−1 be the inverse mapping:
σ−1(x) = y ⇐⇒ σ(y) = x. Then ΣX is a group.

Remarks: Composition of mappings is always associative, whether or not the mappings
are injective or surjective.

If X is finite, then |ΣX | = |X| !.
We write mappings on the left, so σ ◦ τ (x) = σ(τ (x)).

1b. Isomorphism

Definition. Let G and H be groups. An isomorphism from G to H is a mapping φ : G→
H such that

1) φ(xy) = φ(x)φ(y) for all x, y ∈ G.

2) φ is a bijection.

We write G ∼= H if and only if there exists an isomorphism from G to H.

In 1), the products xy and φ(x)φ(y) are in G and H, respectively.

The relation ∼= is then reflexive, symmetric and transitive on the class of all groups. Indeed
one sees quickly from the definition of isomorphism that
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1) For any G, idG : G→ G is an isomorphism;

2) If φ : G→ H is an isomorphism, then φ−1 : H → G is an isomorphism; and

3) If φ : G → H and ψ : H → K are isomorphisms, then ψ ◦ φ : G → K is an
isomorphism.

and these facts imply respectively that ∼= is reflexive, symmetric and transitive. Conse-
quently (ignoring set-theoretic difficulties) the class of all groups is partitioned into “iso-
morphism classes” or “isomorphism types”.

As an example of isomorphisms, let X and Y be sets and suppose that there exists a
bijection f : X → Y . Define φf : ΣX → ΣY by φf (σ) = f ◦ σ ◦ f−1. Notice that the
right side is a composite of bijections so is a bijection, and maps Y to Y . Then φf is an
isomorphism. Indeed φf (στ ) = (fσf−1)(fτf−1) = fστf−1. Moreover, φfφf−1 : ΣY →
ΣX → ΣY takes σ to φf(f−1σf−1−1) = ff−1σf−1−1

f−1 = σ, so φfφf−1 = 1ΣY , and
similarly φf−1φf = 1ΣX . Hence φf is a bijection (with inverse φf−1).

Thus if X and Y are two sets of the same cardinality, then ΣX ∼= ΣY .

If φ : G → H is an isomorphism, and φ(1G) = h, then h2 = φ(1G)φ(1G) = φ(12
G) =

φ(1G) = h, so h = 1H . Likewise for any x ∈ G, φ(x)φ(x−1) = φ(xx−1) = φ(1G) = 1H and
vice-versa, so φ(x−1) = φ(x)−1.

We shall consider isomorphic groups to be the “same”, and group theory is the study of
those properties of groups which are invariant under isomorphism.

We write Σn for Σ{1,2,...,n}.

1c. Rudiments

Note that 1X is the only mapping such that 1Xσ = σ for all σ ∈ ΣX , and f−1 is the unique
inverse of f .

Proposition. Let G be a group. Then

1) 1G is the only identity element of G; indeed it is the unique right identity element
of G and the unique left identity element.

2) For each x ∈ G, x−1 is the unique inverse of x; indeed it is the unique right inverse
and the unique left inverse.

3) If g, h ∈ G then the equation gx = h has a unique solution in G, namely x = g−1h.

4) If n ≥ 3 and x1, . . . , xn ∈ G, then any two associations of x1 . . . xn represent the
same element of G.

5) If x, y ∈ G then (xy)−1 = y−1x−1 and (x−1)−1 = x.

Proof. 1) If e is a right identity then 1G = 1Ge = e, and similarly for left identity elements.

2) If y is a right inverse then x−1 = x−11G = x−1(xy) = (x−1x)y = 1Gy = y. Similarly
for left inverses.

3) Trivial
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4) Induction on n, starting with n = 3, where it is the associative law. Show that the ele-
ment represented by any association of x1 . . . xn equals the element represented by the stan-
dard association [x1 · · ·xn] = x1(x2(x3(· · · (xn−1xn) · · ·)). Namely any association equals
a product of associations of x1, . . . , xk and xk+1, . . . , xn, so equals [x1 · · · xk][xk+1 · · · xn]
by induction. This equals

(x1[x2 · · · xk])[xk+1 · · · xn] = x1([x2 · · ·xk][xk+1 · · ·xn]) = x1[x2 · · ·xn] = [x1 · · · xn],

the three steps by associativity, induction and definition, respectively.

5) xy(y−1x−1) = (y−1x−1)xy = 1 and xx−1 = x−1x = 1. QED

Ex. B. Let G be a group. A subset H of G which is itself a group with respect to the same
operation is a subgroup of G. (Notation: H ≤ G.)

For instance, if G = ΣX and x ∈ X, then Gx = {σ ∈ ΣX |σ(x) = x is a subgroup of G. It
is isomorphic to ΣX−{x}, via the isomorphism Gx → ΣX−{x} taking σ 7→ σ|X − {x}.

Proposition. If G is a group and H ⊆ G, then H ≤ G if and only if H is nonempty and
closed under multiplication and inversion. In that case 1H = 1G and for x ∈ H, x−1 has
the same meaning in both H and G.

Proof. Left to reader. QED

Theorem. (Cayley) Let G be a group. For each g ∈ G let λg ∈ ΣG be defined by
λg(h) = gh. Then GG = {λg | g ∈ G} is a subgroup of ΣG and is isomorphic to G.

Proof. Notice that λg′ (λg(h)) = λg′ (gh) = g′(gh) = (g′g)h = λg′g(h). So

λg′ ◦ λg = λg′g.

Similarly,
λ1G = idG, whence λgλg−1 = λgg−1 = λ1G = idG = λg−1λg.

It follows that each λg is bijective with inverse λg−1 , so λg ∈ ΣG. Closure, identity and
inverse follow easily. Define λ : G→ GG by λ(g) = λg. The first displayed equation is the
first condition for an isomorphism. λ is surjective by definition of GG. And if λ(g) = λ(g′),
then g = λg(1G) = λg′ (1G) = g′, so λ is bijective and hence an isomorphism. QED

This is generally not very useful, except for philosophical reasons: groups are inherently
groups of permutations, or can be viewed as such.

1d. More examples

Ex. C. Let X be a set “with structure”. A mapping σ ∈ ΣX is an automorphism of X if and
only if it “preserves” the structure. Aut(X) is the set of all automorphisms of X. Then
Aut(X) is a group, indeed a subgroup of ΣX .
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Ex. C′. Let G be a group. An automorphism of G is an isomorphism from G to G. Then
Aut(G), the set of automorphisms of G under composition, is a group. (Check this.
Need the inverse of an automorphism is an automorphism.)

Ex. C′′. Let R be Rubik’s cube; more precisely the set {s1, . . . , s54} of all 54 positions which
can be held by a colored square on the surface of the cube. Let G(R) be the set of all
σ ∈ Σ54 such that by legitimate moves one may transform a given configuration to a
new one in which the square at position i has been moved to position σ(i), i = 1, . . . , 54.
Then G(R) is a group. (It has order 21037 · 8! · 12!, if memory serves.)

Ex. D. Let n be an integer and G = GLn(C) the set of n × n nonsingular matrices over C,
the complex field. Then G is a group (under matrix multiplication). A subgroup is
SLn(C) = {g ∈ GLn(C) | det g = 1}.

The field C can be replaced by R or any commutative ring here. Also Cayley’s theorem
has an analogue here: any finite group G is isomorphic to a subgroup of GL|G|(C) (con-
sisting of the permutation matrices, rows and columns indexed by G, corresponding to the
permutations λg, g ∈ G.

Ex. D′. An example similar to, but different from, GL2(C) is the group of fractional linear
transformations of the complex plane, that is, the group LF (2,C) of all permutations
σ of the extended complex plane (Riemann sphere) C ∪ {∞} of the form

σ(z) =
az + b

cz + d

such that a, b, c, d are complex constants for which ad − bc 6= 0. This last condition
prevents σ from being a constant mapping, so is actually redundant. We may write
σ = σA, where A is the “matrix of coefficients”

A =
[
a b
c d

]
.

It is then easy to check that

LF (2,C) = {σA |A ∈ GL2(C)}, and σAσB = σAB∀A,B ∈ GL2(C).

However, the mapping

φ : GL2(C)→ LF (2,C) defined by φ(A) = σA,

is not an isomorphism, because it fails to be injective. In fact σcA = σA for every A
and for every c ∈ C×.

Exercise. Show that for any A,B ∈ GL2(C), we have σA = σB if and only if B = cA for
some c ∈ C×.

1e. Powers; cyclic groups

Ex. E. Let G be any group and g ∈ G. Define gn for n ∈ Z as follows: g0 = 1G and gn+1 = gng
for n ≥ 0; gn = (g−n)−1 for n < 0.
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Proposition. Let g ∈ G and m,n ∈ Z. Then gmgn = gm+n, and (gm)−1 = g−m.
Moreover (gm)n = gmn.

This is a consequence of 4) of the Proposition above, when m and n have the same sign;
otherwise, there are several cases, e.g. if n ≥ |m| with m < 0, then gn = g−mgm+n, so
gmgn = gmg−mgm+n = gm+n. The remaining assertions are left to the reader to prove.

The set {gn |n ∈ Z} is a subgroup of G, and is denoted by 〈g〉. A group arising in this
way–as the powers of a single element–is called cyclic, and g is called a generator.

Examples of cyclic groups: Z, the set of integers, with respect to addition. 1 is a generator,
0 = 1Z, and usually one writes g + h for gh and −g for g−1. Also Zn, the integers mod n
(here n is a positive integer), with elements [i], i ∈ Z, and [i] = [j] if and only if i ≡ jmodn;
[i] + [j] = [i+ j]. A generator is [1].

Proposition. Every cyclic group G is isomorphic to exactly one of the groups Z, Zn,
n = 1, 2, . . .. Moreover if G = 〈g〉, then there is a unique isomorphism Z→ G or Zn → G,
as the case may be, taking 1 7→ g or [1] 7→ g.

Proof. If gn 6= 1 for all n 6= 0, then the elements gn, n ∈ Z are all different (for gn = gm

would imply gn−m = gn(gn)−1 = 1 and hence n−m = 0). Map Z→ G by n 7→ gn. This
is clearly injective, surjective, and multiplicative.

If gn = 1 for some n 6= 0, then g−n = (gn)−1 = 1, so we may take n > 0. We may also
assume that n is the smallest positive integer such that gn = 1. Then the elements gi,
0 ≤ i < n, are all distinct, by a similar argument, and gi = gj ⇐⇒ i ≡ jmodn. The
mapping Zn → G taking [m] 7→ gm, 0 ≤ m < n is then well-defined and bijective, and
gmgm

′
= gm+m′, providing the isomorphism.

The uniqueness of the isomorphism is clear since if 1 or [1] maps to g, then m = 1+ · · ·+1
or [m] = [1] + · · · + [1] maps to g · · · g = gm by repeated use of the multiplicativity of the
isomorphism. QED

Exercise. The distinct subgroups of Z are the subgroups 〈n〉, n > 0. The distinct sub-
groups of Zn are the subgroups 〈[m]〉, m > 0, m dividing n. Consequently every subgroup
of a cyclic group is cyclic; and a cyclic group of order n has a subgroup of order m if and
only if m divides n.

As a corollary we can define the order of an element.

Definition. Let G be a group and g ∈ G. The order of g is |g| = |〈g〉|, the cardinality of
〈g〉.

Thus the order of g is a positive integer or ∞. In a finite group, every element has finite
order.

Exercise. If g ∈ G and gn = 1 for some integer n 6= 0, then the order of g is finite and
divides n.
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1f. Generation

Ex. F. For this example we need a lemma.

Lemma. The intersection of any collection of subgroups of a group G is a subgroup of G.

Proof. Left to reader. QED

Definition. Let G be a group and S any subset of G. The intersection of all subgroups
of G containing S (G is one of them) is a subgroup of G called 〈S〉, the subgroup of G
generated by S.

Proposition. 〈S〉 = {sε11 s
ε2
2 · · · sεnn |n ≥ 0, si ∈ S and εi = ±1 ∀i}.

The expressions on the right are called “words in S ∪ S−1”. Here if n = 0, the empty
product is interpreted as 1G.

Proof. Since (xy)−1 = y−1x−1 and (x−1)−1 = x, the right side H is obviously a subgroup
of G, and S ⊆ H via words of length 1. Therefore 〈S〉 ≤ H. On the other hand 〈S〉
contains each s±1, s ∈ S, and hence contains all the elements of H, as it is closed under
inversion and products. QED

Though the situation is nice for cyclic groups, those generated by one element, it quickly
becomes intractable for groups generated by two or more elements.

Exercise. Σn is generated by two elements.

Hint: Every permutation is the composition of “transpositions”, i.e., interchanges of pairs
of objects. The transposition (12) and the cycle (12 · · · n) generate a subgroup containing
all transpositions and hence generate Σn.

Furthermore, it can be shown that limn→∞ P (〈x, y〉 = Σn) = 1, for x and y chosen
(uniformly) randomly and independently in Σn.

Another example of this is

SL2(Z) =
〈[

0 1
−1 0

]
,

[
0 1
−1 −1

]〉
.

Taking matters to larger extremes, Burnside proposed the following problem a hundred
years ago.

Let m and n be positive integers. Let G be a group such that gn = 1 for all g ∈ G, and
G = 〈S〉 for some set of cardinality m. Is G necessarily finite?

The answer turns out to be “no” in general, although for some very small values of n, it
is “yes”. Of course it is “yes” for m = 1. It is not known for (m,n) = (2, 5).

1g. Abelian groups

Ex. G. However, the situation is better controlled for abelian groups, those which satisfy the
commutative law.
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Definition. A group G is commutative (or abelian) if and only if xy = yx for all x, y ∈ G.

Exercise. If G is abelian then (xy)m = xmym for all x, y ∈ G and m ∈ Z. Moreover if G
is abelian and generated by elements x1, . . . , xr and xni = 1 for all i, then G is finite and
its cardinality is at most nr.

Examples of abelian groups are cyclic groups, the additive group of the rationals, reals,
complexes (or any field), the multiplicative group of nonzero rationals, reals, complexes
(or any field), the multiplicative group of all roots of unity in C (or in any field), and the
matrix group

U =

{[
1 c
0 1

] ∣∣∣∣∣ c ∈ C

}
.

Exercise. If G is an abelian group, then any subgroup of G is abelian.

Definition. A periodic group (torsion group) is one all of whose elements have finite
order. The exponent of a torsion group is the least common multiple of the orders of its
elements (or ∞, if there is no such common multiple). The exponent of a non-torsion
group is ∞.

Exercise. Suppose that G = 〈S〉. If G is abelian, then the exponent of G is the least
common multiple of the orders of the elements of S.

Exercise. A group of exponent 2 is necessarily abelian. There exist nonabelian groups of
exponent 3.

1h. Dihedral groups

Ex. H. Let n > 2 be an integer and let D2n be the group of symmetries of the regular n-gon.
Thus D2n contains rotations through integer multiples of 2π/n, which form a cyclic
subgroup of cardinality n, generated by rotation σ through 2π/n. In addition there are
the reflections about an axis of symmetry; there are n of these as well. Notice that if
τ is one such reflection, then σiτ is also a reflection. There are no other symmetries,
so D2n = {σ1, σ2, . . . , σn, σ1τ, . . . , σnτ} = {σiτ j | 0 ≤ i < n, 0 ≤ j ≤ 1}. The
multiplication is determined by the following rules:

σn = 1, τ 2 = 1, τστ = σ−1.

For then

σiτ jσkτ ` =
{
σi+kτ ` if j = 0
σi−kτ 1+` if j = 1

Notice however that D2n = 〈τ, στ 〉, and both of these elements have order 2.

1i. Direct products
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Ex. I. Let G and H be groups. The (external) direct product G×H is the group based on
the set which is the Cartesian product {(g, h) | g ∈ G, h ∈ H} and with multiplication
(g, h)(g′, h′) = (gg′, hh′). Then G×H has subgroups G1 = {(g, 1) | g ∈ G} isomorphic
to G and H1 = {(1, h) |h ∈ H} isomorphic to H, every element of G is the product of
an element of G1 and one of H1, and g1h1 = h1g1 for all g1 ∈ G1, h1 ∈ H1. But any
nonabelianness of G and H is preserved.

Indeed if {Gi | i ∈ I} is a family of groups indexed by the set I, then
∏
i∈I

Gi is the set

of all functions f : I → ∪Gi such that f(i) ∈ Gi for all i; multiplication is pointwise:
(ff ′)(i) = f(i)f ′(i). Within this is the restricted direct product, the subgroup consisting
of all elements f such that f(i) = 1Gi for all but finitely many i ∈ I.
We shall see that every finite (or even finitely generated) abelian group is isomorphic to
the direct product of finitely many cyclic groups. But nothing like this is true for infinitely
generated groups or for finite nonabelian groups.

Ex. J. Let G = ΣX and let Y be a subset of X, ∅ 6= Y 6= X. Let G[Y ] = {σ ∈ G |σ(Y ) = Y }.
Then G[Y ] ≤ G. Moreover, the mapping

G[Y ]
∼= ΣY × ΣX−Y

via the isomorphism σ 7→ (σ|Y, σ|(X − Y )). Checking this is a matter of checking that
a) composition of mappings is preserved upon restriction to a subset (left invariant by
the mappings in question); b) every permutation of X leaving Y invariant is made up
of a permutation of Y and one of X −Y , and every such pair conversely together form
a permutation of X.
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