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Section 10. Ordinary and regular singular points of differential equations

In this section we consider a linear, second order, homogeneous ordinary differential
equation (ODE) for an unknown function y = y(x):

M(x)y′′ + P (x)y′ + Q(x)y = 0. (14)

Clearly (14) can also be written in the form

y′′ + p(x)y′ + q(x)y = 0, (15)

with

p(x) =
P (x)

M(x)
, q(x) =

Q(x)

M(x)
. (16)

We say that a point x0 is an ordinary point for the differential equation (14) (or equivalently
for (15)) if both p(x) and q(x) are analytic at x0. If x0 is not an ordinary point then it is
a singular point. x0 is a regular singular point (RSP) if it is a singular point (so that one,
or both, of p(x) and q(x) are not analytic at x0) and both of the functions

(x − x0) p(x) and (x − x0)
2 q(x) (17)

are analytic at x0. Otherwise, x0 is an irregular singular point.

Example 10: (a) Consider the Legendre equation

(1 − x2)y′′ − 2xy′ + λy = 0 ⇔ y′′ −
2x

1 − x2
y′ +

λ

1 − x2
y = 0, (18)

where λ is some real number (a parameter). Here p(x) = −2x/(1 − x2) and q(x) =
λ/(1−x2). If x0 is neither 1 nor −1 then p(x) and q(x) are analytic at x0, by the Principle
of the Radius of Convergence on page 10, so that such a point x0 is an ordinary point. But
x0 = 1 and x0 = −1 are singular points, since the functions p(x) and q(x) are not analytic
at ±1: they are undefined there and in fact blow up when x → ±1. On the other hand,
taking x0 = 1 and considering (17) we have

(x − 1) p(x) = −(x − 1)
2x

1 − x2
=

2x

1 + x
,

(x − 1)2 q(x) = (x − 1)2
λ

1 − x2
=

λ(1 − x)

1 + x
.

(19)

Both the functions in (19) are analytic at x = 1, so x0 = 1 is a regular singular point. One
finds similarly that x0 = −1 is also a regular singular point.

(b) Consider the equation x3y′′ + y = 0, with p(x) = 0 and q(x) = 1/x3. Here it is easy to
see that if x0 6= 0 then x0 is an ordinary point of the equation, just as above. But x0 = 0
is a singular point; moreover, (x− 0)2q(x) = x2q(x) = 1/x is not analytic at x = 0, so this
is not a regular singular point.
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Now we would like to find solutions of (14) which are valid near some point x0, in the
form of a series involving powers of x − x0. When x0 is an ordinary point of the equation
we can do this with a standard power series, as discussed in the next section. When x0 is
a regular singular point we can use a modified power series; this is called the Method of

Frobenius. When x0 is an irregular singular point we have no way to find such a solution.

Section 11. Power series solutions centered at an ordinary point

When x0 is an ordinary point for the ODE (14) we can find a solution in the form of
a power series with center x0:

y(x) =

∞
∑

n=0

an(x − x0)
n. (20)

We will first work this out in an example, and then draw from this some general conclusions.

Example 11: We consider again the Legendre equation (18) and take x0 = 0, so we are
looking for a solution of the form y(x) =

∑

n anxn. To find out whether or not there is
such a solution we must plug the proposed form into the differential equation and try to
choose the coefficients an so that the equation is satisfied. Computing the derivatives as

y =

∞
∑

n=0

anxn, y′ =

∞
∑

n=0

nanxn−1, y′′(x) =

∞
∑

n=0

n(n − 1)anxn−2. (21)

and inserting these into the left hand side of (18) yields

(1 − x2)y′′ − 2xy′ + λy

= (1 − x2)

∞
∑

n=0

n(n − 1)anxn−2 − 2x

∞
∑

n=0

nanxn−1 + λ

∞
∑

n=0

anxn (22a)

=

∞
∑

n=0

n(n − 1)anxn−2 −

∞
∑

n=0

n(n − 1)anxn −

∞
∑

n=0

2nanxn +

∞
∑

n=0

λanxn (22b)

=
∞
∑

n=2

n(n − 1)anxn−2 −
∞
∑

n=0

[

n(n − 1) + 2n − λ
]

anxn (22c)

=

∞
∑

k=0

(k + 2)(k + 1)ak+2x
k −

∞
∑

k=0

[

k(k − 1) + 2k − λ
]

akxk (22d)

=
∞
∑

k=0

[

(k + 2)(k + 1)ak+2 −
[

k(k + 1) − λ
]

ak

]

xk. (22e)

Most of these steps are straightforward, but several need special comment. In (22c) we
were able to change the lower summation limit in the first sum from n = 0 to n = 2 because
the n = 0 and n = 1 terms of the sum were equal to zero, due to the factor n(n − 1) in

13
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the summand. In passing to (22d) we changed the summation index from n to k, but did
this in two different ways, setting k = n− 2 in the first sum and k = n in the second; this
is legitimate because these summation indices just keep track of the terms and have no
intrinsic meaning.

Once we have obtained (22e) the Legendre equation (18) becomes

∞
∑

k=0

[

(k + 2)(k + 1)ak+2 −
[

k(k + 1) − λ
]

ak

]

xk = 0.

What this means is that the right left hand side must be zero for all x, and this is possible
only if each term in the power series is itself zero. Thus we are led to the condition that

(k + 2)(k + 1)ak+2 −
[

k(k + 1) − λ
]

ak = 0, k = 0, 1, 2, . . . , (23a)

or equivalently that

ak+2 =
k(k + 1) − λ

(k + 2)(k + 1)
ak, k = 0, 1, . . . . (23b)

Either of the equations (23a) or (23b) is called the recursion relation for the coefficients
ak. We can systematically solve (23b) for a2, a3, etc.:

k = 0 : a2 = −
λ

2
a0 =

(−λ)

2!
a0

k = 1 : a3 =
2 − λ

3 · 2
a1 =

2 − λ

3!
a1

k = 2 : a4 =
6 − λ

4 · 3
a2 =

(6 − λ)(−λ)

4!
a0

k = 3 : a5 =
12 − λ

5 · 4
a3 =

(12 − λ)(2 − λ)

5!
a1

k = 4 : a6 =
20 − λ

6 · 5
a4 =

(20 − λ)(6 − λ)(−λ)

6!
a0

k = 5 : a7 =
30 − λ

7 · 6
a4 =

(30 − λ)(12 − λ)(2 − λ)

7!
a1,

...

(24)

Putting the values from (24) back into y(x) =
∑

∞

n=0
anxn yields

y(x) = a0 + a1x +
(−λ)

2!
a0x

2 +
2 − λ

3!
a1x

3 +
(6 − λ)(−λ)

4!
a0x

4

+
(12 − λ)(2 − λ)

5!
a1x

5 +
(20 − λ)(6 − λ)(−λ)

6!
a0x

6 + · · · .

(25)

If we group separately the terms with coefficient a0 and those with coefficient a1 we find

y(x) = a0y0(x) + a1y1(x);

14
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here a0 and a1 are arbitrary coefficients and

y0(x) = 1 +
(−λ)

2!
x2 +

(6 − λ)(−λ)

4!
x4 +

(20 − λ)(6 − λ)(−λ)

6!
x6 + · · ·

y1(x) = x +
2 − λ

3!
x3 (12 − λ)(2 − λ)

5!
x5 +

(30 − λ)(12 − λ)(2 − λ)

7!
x7 + · · · · · · .

(26)

Thus we have indeed found a power series solution of the Legendre equation with center
x0 = 0.

Remark 12: We make several further comments about the general problem of series
solutions at an ordinary point and about this example.

(a) The procedure we used above, in Example 11, is completely general. When x0 is an
ordinary point for the ODE (14) we can look for a solution in the form (20). The recursion
relation for the coefficients always has the form

(n + 2)(n + 1)an+2 = (some linear combination of a0, a1, . . . , an+1),

so that we can solve for a2, a3, etc. in terms of lower coefficients and eventually in terms
of a0 and a1. This means that there is a solution

y(x) = a0y0(x) + a1y1(x) (27)

such that y0(x) and y1(x) are as in (26):

y0(x) = 1 + b2(x − x0)
2 + b3(x − x0)

3 + · · · ,

y1(x) = (x − x0) + c2(x − x0)
2 + c3(x − x0)

3 + · · · ,
(28)

with b2, b3, . . . and c2, c3, . . . computable expressions (not unknown coefficients) like those
in (26). Note that (28) implies that

y0(x0) = 1, y′

0(x0) = 0, y1(x0) = 0, y′

1(x0) = 1, (29)

so that y0 and y1 are just the solutions of (14) satisfying the initial conditions (29). One
should remember at this point that the general solution of a linear second order homoge-
neous ODE always has the form (27), with y0 and y1 two linearly independent solutions;
here the initial conditions (29) guarantee that the y0 and y1 that we have found are in fact
linearly independent.

(b) We continue with the discussion of a general equation (14), with x0 an ordinary point.
Then by definition the functions p(x) and q(x) given in (16) are analytic at x0; suppose
that power series for these functions, with center x0, have radii of convergence R1 and R2

respectively. Then one can prove that the solution series for y0 and y1 given in (28) have
radii of convergence at least as large as the smaller of R1 and R2, that is, that the series
for the solution converges everywhere that we might reasonably expect it to.

(c) Let us again consider our series solutions y0(x) and y1(x) (see (26)) of the Legendre
equation with center x0 = 0. The power series for p(x) = −2x/(1 − x2) and q(x) =

15
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λ = 1 λ = 10

Figure 1: Solutions y0(x) (solid) and y1(x) (dashed) of the Legendre equation.

λ/(1 − x2) with center 0 will have radii of convergence R = 1, by the Principle of the
Radius of Convergence on page 10, and so (b) above guarantees that y0 and y1 will have
radii of convergence at least 1. For most values of the parameter λ the radii are exactly 1,
and the functions approach ±∞ as x approaches 1; plots (from Maple) of y0(x) and y1(x)
for λ = 1 and λ = 10 are shown in Figure 1.

(d) Suppose, however, that λ = n(n+1) for some nonnegative integer n, that is, λ has one
of the values 0, 2, 6, 12, 20, . . .. Then from (23b) we see that an+2 = 0, and since (again from
(23b)) n + 4 is proportional to an+2 we must have an+4 = 0, and continuing we see that
an+2k = 0 for all k ≥ 1. Suppose, for example, that n = 6; then a8 = a10 = a12 = · · · = 0
and so y0 is a polynomial: y0(x) = a0 +a2x

2 +a4x
4 +a6x

6. In general the argument above
shows that:

If λ = n(n + 1) with n = 0, 2, 4, 6, . . . then y0(x) is a polynomial of degree n;

If λ = n(n + 1) with n = 1, 3, 5, 7, . . . then y1(x) is a polynomial of degree n.

The Legendre polynomials Pn(x) are defined by Pn(x) = cny0(x) when n is even, Pn(x) =
cny1(x) when n is odd, where y0 and y1 are the solutions of the Legendre equation with
λ = n(n + 1). The constants cn are chosen so that Pn(1) = 1; then

P0(x) = 1, P1(x) = x, P2(x) =
3x2 − 1

2
, P3(x) =

5x3 − 3x

2
, . . . .

More details about these polynomials are given in Section 4.4 of our text.

(e) For the Legendre equation with general λ one can see from (24) that

an(x) =











(

(n − 1)(n − 2) − λ
)(

(n − 3)(n − 4) − λ
)

· · · (6 − λ)(−λ)

n!
a0; if n is even,

(

(n − 1)(n − 2) − λ
)(

(n − 3)(n − 4) − λ
)

· · · (12 − λ)(2 − λ)

n!
a1, if n is odd.

Finding a general formula of this sort is frequently possible; it is basically a matter of
seeing the pattern in the first few coefficients.
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Section 12. Series solutions centered at a regular singular point

We now suppose that x0 is a regular singular point for the ODE (14); again for
notational simplicity we will often take x0 = 0, but it should be remembered that there
is nothing special about this choice. We first consider a very special ODE, the Euler, or
Cauchy-Euler, or equidimensional equation (see Section 3.6.1 of our text):

x2y′′ + p0xy′ + q0y = 0, (30)

where p0 and q0 are constants. One checks easily that 0 is indeed an RSP for this equation.
The equation always has at least one solution of the form y(x) = xr, for if we plug this
form into (30) we find that it is a solution if and only if r is a root of the indicial equation

r(r − 1) + p0r + q0 = 0. (31)

The equation (31) is just a quadratic equation and so will usually have two distinct roots
r1 and r2; in this case we have two independent solutions of (30), y1(x) = xr1 and y2(x) =
xr2 . When (31) has a double root, r1 = r2 = r, the two solutions are y1(x) = xr and
y2(x) = xr lnx. For later convenience we will call the left hand side of (32) γ(r):

γ(r) = r(r − 1) + p0r + q0. (32)

Now consider the general equation (15), that is,

y′′ + p(x)y′ + q(x)y = 0, (33)

and suppose that x0 = 0 is a regular singular point. Thus by definition we have power
series for xp(x) and x2q(x) with positive radii of convergence R1 and R2:

xp(x) =
∞
∑

n=0

pnxn, |x| < R1; x2q(x) =
∞
∑

n=0

qnxn |x| < R2. (34)

Notice that when x is small we have xp(x) ≈ p0, x2q(x) ≈ q0. If we multiply (33) by x2

and use (34) with these approximations then our ODE becomes

x2y′′ + x[xp(x)]y′ + [x2q(x)]y = 0 ≈ x2y′′ + xp0y
′ + q0y = 0 when x is small.

That is, the equidimensional equation (30) is a good approximation to (33) when x is
small. We hope that the form of the solutions of the equidimensional equation will provide
a guide to the form of the solutions of (33), and will thus look for solutions of (33) in the
form

y(x) = xr
∞
∑

n=0

anxn =

∞
∑

n=0

anxn+r, a0 6= 0, (35)

with r an unknown quantity, to be determined. This is the key to the Method of Frobenius

for finding a series representation, valid in the neighborhood of a regular singular point, of
the solution of an ODE.
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There are two comments to make about the form (35). First, why did we require that
a0 6= 0? Suppose to the contrary that a0 = 0, then we can bring a factor of x out of
the sum in (35) to obtain y(x) = xr

∑

∞

n=1
anxn = xr+1

∑

∞

n=0
an+1x

n, that is, we would
replace r by r + 1. Moreover, we could continue doing this until we obtained the form
(35) with nonzero constant term. Thus the assumption a0 6= 0 just means that we want
to remove all factors of x from the series before writing (35).

The second comment involves the fact that r may not be an integer, and if r is not an
integer and x < 0, xr may not be defined, at least as a real number; for example, (−1)1/2

is not real. For this reason when x < 0 we should write y(x) =
∑

n an|x|
n+r. We will

usually ignore this difficulty, tacitly assuming that we are obtaining the solution for x > 0;
if a solution for x < 0 is needed one simply replaces x by |x| throughout.

We now illustrate the method of Frobenius in a concrete example.

Example 13: Consider the ODE

x2y′′ + 3xy′ − 3(1 + x2)y = 0. (36)

Since p(x) = 3x/x2 = 3/x and q(x) = −3(1 + x2)/x2 are not analytic (i.e., are singular)
at x = 0, x = 0 is a singular point; since

xp(x) = x

(

3

x

)

= 3 and x2q(x) = x2

(

−
3(1 + x2)

x2

)

= −3(1 + x2) (37)

are analytic at x = 0, this is a regular singular point. Note also that in (37) we have
directly the power series expansions of xp(x) and x2q(x), since these are just polynomials,
and so by comparison with (34) we have p0 = 3 and q0 = −3; then (32) gives that for this
example

γ(r) = r(r − 1) + 3r − 3 = r2 + 2r − 3. (38)

For y(x) of the form (35) we have

y(x) =
∞
∑

n=0

anxn+r,

y′(x) =
∞
∑

n=0

(n + r)anxn+r−1,

y′′(x) =

∞
∑

n=0

(n + r)(n + r − 1)anxn+r−2,

with which (36) becomes

x2y′′ + 3xy′ − 3(1 + x2)y = x2

∞
∑

n=0

(n + r)(n + r − 1)anxn+r−2 + 3x

∞
∑

n=0

(n + r)anxn+r−1

− 3(1 + x2)

∞
∑

n=0

anxn+r

18
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=

∞
∑

n=0

(n + r)(n + r − 1)anxn+r +

∞
∑

n=0

3(n + r)anxn+r

−
∞
∑

n=0

3anxn+r −
∞
∑

n=0

3anxn+r+2

=

∞
∑

n=0

[

(n + r)(n + r − 1) + 3(n + r) − 3
]

anxn+r −

∞
∑

n=0

3anxn+r+2

=

∞
∑

k=0

[

(k + r)2 + 2(k + r) − 3
]

akxk+r −

∞
∑

k=2

3ak−2x
k+r. (39)

All of this is much as what we did for Example 11, and the same comments apply—for
example, at the last step we wrote k = n in the first sum and k = n +2 in the second. We
would like to combine the two terms in (39) into a single sum; they have the same power
of x, which is a good start, but the summation limits are different, since the second sum
starts at k = 2 rather than k = 0. We fix this by a trick: we agree that we will always
define

a−1 = a−2 = a−3 = · · · = 0. (40)

Then if we extend the limits in the second sum to include k = 0 and k = 1 we are just
adding two expressions which are zero, and this will not change anything. With (39) and
this remark our differential equation (36) becomes

∞
∑

k=0

[

[

(k + r)2 + 2(k + r) − 3
]

ak − 3ak−2

]

xk+r = 0, (41a)

or, if we use (38) to make the equation look simpler,

∞
∑

k=0

[

γ(k + r)ak − 3ak−2

]

xk+r = 0. (41b)

From an argument as in Example 11, that (41) can hold only if the coefficient of each
power of x vanishes, we find the recursion

[

(k + r)2 + 2(k + r) − 3
]

ak = 3ak−2 ⇔ γ(k + r)ak = 3ak−2, k = 0, 1, 2, . . . . (42)

We consider this recursion first for k = 0, when with (40) it becomes γ(r)a0 = 3a−2 = 0.
Since γ(r)a0 = 0 we must have either γ(r) = 0 or a0 = 0. But we agreed (see (35)) that
a0 6= 0, so necessarily

γ(r) = r2 + 2r − 3 = 0. (43)

This is again the indicial equation. From (43) it follows that is r must be one of the
two roots of this quadratic equation, either r = r1 = 1 or r = r2 = −3. We must
deal with these two cases separately.

19
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Before we do so we note that, as pointed out above (38), here p0 = 3 and q0 = −3, and
that the indicial equation (43) is just r(r− 1)+ p0r + q0 = 0, as it would have been for the
equidimensional equation (30). This means that we could have written down (43), and thus
found the two possible values of r, without going through the series computations above.
We could then look directly for two solutions y1 = xr1

∑

anxn and y2 = xr2

∑

bnxn.
However, it is actually advantageous to have obtained the recursion (42) for general r,
since we can now proceed by simply substituting r = r1 and r = r2 into that recursion.

Case 1: r = r1 = 1. We solve the recursion (42) for k = 1, 2, . . .; note that γ(k + r1) =
(k + 1)2 + 2(k + 1) − 3 = k(k + 4) so that ak = 3ak−2/k(k + 4):

k = 1 : a1 =
3

5 · 1
a−1 = 0

k = 2 : a2 =
3

6 · 2
a0

k = 3 : a3 =
3

7 · 3
a1 = 0

k = 4 : a4 =
3

8 · 4
a2 =

32

(8 · 6)(4 · 2)
a0

k = 5 : a5 =
3

9 · 5
a3 = 0

k = 6 : a6 =
3

10 · 6
a4 =

33

(10 · 8 · 6)(6 · 4 · 2)
a0

...

(44)

Clearly all odd coefficients a2k+1, k = 0, 1, . . ., are zero. With a bit more work one can
also guess the general form of the even coefficients:

a2k =
3k

[(2k + 4)(2k + 2) · · ·6][(2k)(2k − 2) · · ·2]
a0

=
3k

22k[(k + 2)(k + 1) · · ·3][k(k − 1) · · ·1]
a0 =

3k

22k−1 (k + 2)! k!
a0,

so that our equation has a solution

y1(x) = x
∞
∑

k=0

3k

22k−1 (k + 2)! k!
x2k. (45)

In writing down (45) we have chosen a0 = 1; this is legitimate because once we have found
a second solution y2(x) we will write the general solution as

y(x) = α1y1(x) + α2y2(x) (46)

and the coefficient a0 could have been absorbed into α1.
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Case 2: r = r2 = −3. Now we are looking for a solution y2(x) = x−3
∑

∞

n=0
bnxn, with

b0 6= 0; here we write the coefficients as bn to distinguish them from the coefficients of y1.
The recursion (42) is now γ(k − 3)bk = 3bk−2, and we try to solve this for k = 1, 2, . . ..
Noting that γ(k − 3) = (k − 3)2 + 2(k − 3) − 3 = k(k − 4) we have:

k = 1 : (1)(−3)b1 = 3b−1 =⇒ b1 = 0

k = 2 : (2)(−2)b2 = 3b0 =⇒ b2 =
3

2 · (−2)
b0

k = 3 : (3)(−1)b3 = 3b1 =⇒ b3 = 0

k = 4 : (4)(0)b4 = 3b2 = −
3

4
b0 =⇒ ? ? ? ? ?

(47)

We have arrived at a contradiction: the last equation implies that b0 = 0, but we chose
b0 6= 0. There is no second solution of the form x−3

∑

∞

n=0
bnxn.

Let us try to understand what went wrong in the example by returning to the general
equation (33) with a regular singular point at the origin (see (34)). If we look for a solution
in the form (35), y(x) = xr

∑

∞

n=0
anxn, we will find a recursion

γ(n + r)an = (some linear combination of a0, a1, . . . , an−1), (48)

where again γ(r) = r(r − 1) + p0r + q0. The n = 0 case of this recursion is γ(r)a0 = 0,
and since a0 6= 0 we must again have γ(r) = 0. Let r1 and r2 denote the two roots of the
quadratic equation γ(r) = 0; we will assume that the roots are real and number them so
that r1 ≥ r2. (Complex roots are not difficult to deal with in terms of what we are doing
here; rather, the difficulty comes in interpreting xr when x is complex. This is not hard
but requires more knowledge of complex numbers than we want to assume.) Again we
consider separately the cases r = r1 and r = r2.

Case 1: r = r1. We set r = r1 in (48) and solve successively for an when n = 1, 2, . . ..
Since n ≥ 1, n + r1 > r1 ≥ r2, and then since γ(r) can vanish only for r = r1 or r = r2 we
have that γ(n + r1) 6= 0, so that we can divide by γ(n + r1) in (48) and thus solve for an,
for every n. We conclude that (33) does have a solution y1(x) = xr1

∑

∞

n=0
anxn; we will

again make the specific choice a0 = 1 so that y1 denotes unambiguously a specific solution.

Case 2: r = r2. Now we would like to set r = r2 in (48) (but with the an replaced by bn)
and try to solve for the bn as in the previous case (this is where we encountered trouble in
Example 13). If r1 = r2, however, it is clear that this will simply produce the solution y1

that we found in Case 1; we will have to look elsewhere for our second solution. But that
is not the only difficulty. Suppose that r2 < r1 but that m = r1 − r2 is an integer; this was
the case in Example 13, where m = 1 − (−3) = 4. Then when ,in solving for the bn, we
reach n = m, we will find that γ(n+r2) = γ(m+r2) = γ(r1) = 0, and the left hand side of
the nth recursion will be 0 · bm. If the right hand side of this recursion is not zero
we will have a contradiction. This is precisely what happened in Example 13 and, as
there, we will have to find a second solution by some other means. On the other hand,
if r1 − r2 is not an integer we will have no difficulty solving the recursions and finding
y2(x) = x−r2

∑

∞

n=0
bnxn. In summary:
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• We always have one solution y1(x) = xr1

∑

∞

n=0
anxn, with a0 = 1.

• if m = r1−r2 is not an integer then there is a second solution y2(x) = xr2

∑

∞

n=0
bnxn,

with b0 = 1.

• if m = r1−r2 is an integer (necessarily nonnegative) then we will have to find a second
solution of a different form.
There is a systematic procedure, called reduction of order, which, when one knows one

solution of a second order linear homogeneous ODE, enables one to find an independent
second solution. Since for a regular singular point we may always find one solution, y1(x),
corresponding to r1, we could use reduction of order to find the form of a second solution
y2(x) when m = r1 − r2 is an integer. We omit this step, however, and simply summarize
the results:

Form of solutions near a regular singular point

Suppose that the ODE y′′+p(x)y′+q(x) = 0 has a regular singular point at the origin,
that r1 and r2 are the two roots of the indicial equation γ(r) = 0, and that r1 and r2

are real and that r1 > r2. Then:

(a) if r1 and r2 are distinct and do not differ by an integer, then there are two linearly
independent solutions:

y1(x) = xr1

∞
∑

n=0

anxn, y2(x) = xr2

∞
∑

n=0

bnxn, a0 = b0 = 1. (49)

(b) If r1 = r2, then there is one solution y1(x) of the form given in (49), and a second
solution with the form

y2(x) = y1(x)(lnx) + xr1

∞
∑

n=1

cnxn. (50)

(c) If r1 − r2 = m, with m a positive integer, then there is one solution y1(x) as in
(49), and a second solution with the form

y2(x) = Cy1(x)(lnx) + xr2

∞
∑

n=0

cnxn, c0 = 1, cm = 0. (51)

The constant C may or may not be zero.

Each of the series in (49)– (50) has radius of convergence at least as large as the
smaller of the radii of convergence (34) for xp(x) and x2q(x).

In these formulas we have “normalized” the solutions by choosing a0 and b0 in (49),
the coefficient of y1(x)(lnx) in (50), and c0 in (51), all to have value 1. We could just as
well have said only that they were nonzero, but it is convenient to have the solutions y1(x)
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and y2(x) unambiguously defined. We have also chosen to omit any constant term in (50),
that is, to set c0 to be 0 there, and similarly to set cm = 0 in (51). If one did not do this,
one would find that the values of c0 in (50) and cm in (51) would not be determined during
the solution procedure: they could be chosen freely. Choosing a nonzero value, however,
would amount to adding a multiple of y1(x) to the solution y2(x) as given in (50) or (51),
and this is not of interest.

We now turn to the question of determining these solutions explicitly, that is, of
finding the various unknown coefficients an, bn, cn, and/or C. We give a step by step
summary.

Step I: As discussed above and demonstrated in Example 13, we begin by substituting
the form y(x) = xr

∑

∞

n=0
anxn into y′′ + p(x)y′ + q(x) = 0, obtaining

∞
∑

n=0

[

γ(n+r)an−Fn(r, a)
]

xn+r−2 = 0 =⇒ γ(n+r)an = Fn(r, a), n = 0, 1, . . . , (52)

where a = (a0, . . . , an−1) and Fn(r, a) is some linear combination of a0, a1,. . . , and an−1

(this is just (48) rewritten). The n = 0 instance of the recursion in (52) gives γ(r) = 0
and thus determines r1 and r2.

Step II: We find the coefficients an of the solution y1(x) by replacing r in (52) by r1

and then solving successive recursions for a1, a2, . . . . This was also demonstrated in
Example 13.

Step III(a): When m = r1−r2 is not an integer we find the coefficients bn of the solution
y2(x) in (49) by replacing r in (52) by r2 and an by bn, and then solving successive
recursions for b1, b2, . . . . This is just the same procedure as used in Step II above.

Step III(b): To find y2(x) when m = r1 − r2 is an integer one must first find y1(x) as in
Step I. Then (50) or (51) tells us that y2(x) can be written as

y2(x) = Cy1(x)(lnx) + u(x), (53)

where C = 1 in (50) and C is to be determined in (51), and

u(x) =
∞
∑

n=0

cnxn+r2 , with c0 = 0 in (50) and c0 = 1, cm = 0 in (51). (54)

Substituting (53) into
y′′ + p(x)y′ + q(x) = 0, (55)

one finds that u(x) must satisfy the equation

u′′ + p(x)u′ + q(x)u =
C

x2

[

y1(x) − xp(x)y1(x) − 2xy′

1(x)
]

. (56)

One then substitutes the form (54) of the series for u(x) into (56) and solves for c1, c2, . . .
and, in (51), C. Because the left hand side of (56) is just the original ODE, with y replaced
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by u, the structure of the resulting recursion will be obtained from (52) by replacing r by
r2, replacing an by cn, and adding the right hand side from (56):

∞
∑

n=0

[

γ(n + r2)cn − Fn(r, c)
]

xn+r2−2 =
C

x2

∞
∑

k=0

dkxk+r1 = C
∞
∑

n=m

dn−mxn+r2−2. (57)

Here
∑

∞

k=0
dkxk+r1 is the (known) power series for y1(x) − xp(x)y1(x) − 2xy′

1(x) and to
obtain the second equality we have made the change of summation index n = k + m in
(57). Thus we have the recursion

γ(n + r2)cn − Fn(r, c) =

{

0, if n < m,
Cdn−m, if n ≥ m.

(58)

When m = 0, that is, when solving (50) (so that C = 1) one will have d0 = 0, so that the
n = 0 case of (58) will be just 0 = 0; we will then solve the n = 1, 2, . . . cases for c1, c2, . . ..
When m > 0 the n = m case will be −Fn(r, c) = Cd0, d0 will be nonzero, and we will
solve this for C, then solve n = 1, 2, . . . cases for c1, c2, . . ...

One must be careful about one point in using the procedure of Step III(b). As stated,
it assumes that one begins with the form (55) of the ODE in which the coefficient of y′′ is
1. In practice, however, one frequently begins rather with M(x)y′′ + P (x)y′ + Q(x)y = 0
(see (14)); for example, in Example 13 we substituted the form (35) of the solution into
x2y′′ + 3xy′ − 3(1 + x2)y = 0, not into y′′ + (3/x)y′ − (3(1 + x2)/x2)y = 0. In this case it
is better to multiply (56) by M(x) to obtain

M(x)u′′ + P (x)u′ + Q(x)u =
M(x)

x2

[

y1(x) − xp(x)y1(x) − 2xy′

1(x)
]

(59)

and start from there. If M(x) = x2, however, this does not change much; in particular,
(57) is multiplied by x2 and the recursion (58) is the same.

Example 13 concluded: We show how this works by finding a second solution y2(x)
for the equation (36), thus completing the solution of Example 13. We have r1 = 1,
r2 = −3, and so m = 4: we are looking for a solution in the form (51). We will use
(58) and first discuss separately left and right sides of this equation. The left hand side
comes directly from (41); since γ(n + r + 2) = n(n − 4) it is n(n − 4)cn − 3cn−2 (that is,
Fn(r, c) = −3cn−2. For the right hand side we find the dk from the solution y1(x) as given
in (45); using x(x) = 3:

y1(x) − xp(x)y1(x) − 2xy′

1(x) = −2
(

y1(x) + xy′

1(x)
)

= −2

(

∞
∑

k=0

3k

22k−1 (k + 2)! k!
x2k+1 +

∞
∑

k=0

(2k + 1)3k

22k−1 (k + 2)! k!
x2k+1

)

= −4
∞
∑

k=0

(k + 1)3k

22k−1 (k + 2)! k!
x2k+1 (60)
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Comparing (60) with (57) and using r1 = 1 we see that

d2k = −
(k + 1)3k

22k−3 (k + 2)! k!
, d2k+1 = 0, k = 0, 1, . . . .

One finds easily then that the odd coefficients c2k+1 are all zero; we omit details. For the
even coefficients we have

n = 0 : 0 · c0 − 3c−2 = 0; take c0 = 1.

n = 2 : (−4)c2 − 3c0 = 0; c2 = −
3

4
.

n = 4 : 0 · c4 − 3c2 = Cd0 = −4C; C =
3

4
c2 = −

9

16
; take c4 = 0.

n = 6 : 12c6 − 3c4 = Cd2 =

(

−
9

16

)(

−
6

3

)

; c6 =
3

32
.

n = 8 : 32c8 − 3c6 = Cd4 =

(

−
9

16

)(

−
27

96

)

; c8 =
1

32

(

81

512
+

9

32

)

=
225

16384
.

...

Thus

y2(x) = −
9

16
y1(x)(lnx) + x−3 −

9

16
x−1 +

3

32
x3 +

225

16384
x5 + · · · .

This result may also be obtained, as shown in class, by writing out a few terms on both
sides of (57) explicitly.

Remark 14: An ordinary point of a differential equation may be considered, in some
sense, as a special case of a regular singular point. If x = 0 is an ordinary point of (55)
then the above analysis applies; one finds that γ(r) = r(r − 1) and hence that r1 = 1,
r0 = 0 and m = 1. Thus we expect solutions y1(x) =

∑

∞

n=0
anxn+1 with a0 = 1 and, from

(51), y2(x) = Cy1(x)(lnx) +
∑

∞

n=0
bnxn with b0 = 1, b1 = 0. However, we already know

that in this case there are two linearly independent solutions, as power series in x, which
do not contain lnx; this means that necessarily C = 0. One can also find this directly
from (58). Then y1(x) and y2(x) are respectively the two solutions y1(x) and y0(x) found
in (28).
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