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SUMMARY OF THE METHOD OF FROBENIUS

Consider the linear, homogeneous, second order equation:

y′′ + p(x)y′ + q(x)y = 0. (1)

Suppose that x = 0 a regular singular point:

xp(x) =
∞∑

n=0

pnxn, |x| < R1, x2q(x) =
∞∑

n=0

qnxn, |x| < R2, R1, R2 > 0.

Define γ(r) = r(r − 1) + p0r + q0; the indicial equation is

γ(r) = 0, roots r1, r2.

Case (i). r1 and r2 are distinct and do not differ by an integer. There are two
linearly independent solutions:

y1(x) = xr1

∞∑

n=0

anxn, y2(x) = xr2

∞∑

n=0

bnxn, a0 = b0 = 1. (2)

Case (ii). r1 = r2. There is one solution y1(x) of the form given in (2), and a second
solution with the form

y2(x) = y1(x)(lnx) + xr1

∞∑

n=1

cnxn. (3)

Case (iii). r1 = r2 + m, m a positive integer. There is one solution y1(x) as in (2),
and a second solution with the form

y2(x) = Cy1(x)(lnx) + xr2

∞∑

n=0

dnxn, b0 = 1. (4)

The constant C may or may not be zero. One may assume that dm = 0; see below.

FURTHER COMMENTS

1. Normalization. In these formulas we have “normalized” the solutions by choosing
a0, and also b0 in Case (i) and D0 in Case (iii), to have value 1. We could just as well
have said only that they were nonzero, but it is convenient to have the solutions y1(x) and
y2(x) completely defined.

2. Radius of convergence. All the power series in (2)–(4) are guaranteed to have radius
of convergence at least as big as the smaller of R1 and R2.
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3. Solution procedure, Case (i). The coefficients an of the solution y1(x) are deter-
mined by substituting the given expression (2) for y1(x) into (1) and then solving successive
equations for a1, a2, . . . . These have the form (before we set a0 = 1)

γ(n + r1)an = a linear combination of a0, a1, . . . , an−1. (5)

The coefficients bn of the second solution y2(x) in Case (i) are found similarly.

4. Solution procedure, Cases (ii) and (iii). In these cases one first finds y1(x). The
solution y2(x) of (3) or (4) can be written as y2(x) = Cy1(x)(lnx) + u(x), where C = 1 in
Case (ii) and C is to be determined in Case (iii), and in each case u is given by a series.
Substituting this form into (1) one finds that u(x) must satisfy the equation

u′′ + p(x)u′ + q(x)u =
C

x2
[y1(x) − xp(x)y1(x) − 2xy′

1
(x)] . (6)

One then substitutes the form of the series for u(x), as given in (3) or (4), into (6) and
solves for c1, c2, . . . in Case (ii) or for C and d1, d2, . . . in Case (iii). The general structure
of the equations will be similar to (5). In Case (ii) these will look like

γ(n + r2)cn = a constant term plus a linear combination of c1, c2, . . . , cn−1. (7)

(Recall that C = 1 in Case (ii).) In Case (iii) we will have

γ(n + r2)dn = a linear combination of C and d1, d2, . . . , dn−1. (8)

In this case the constant C (which must be solved for) first appears on the right hand side
of (7) when m = n; then γ(m + r2) = γ(r1) = 0 so that the left hand side vanishes (and
dm is not determined). Then C must be chosen to make the right hand side vanish also.

5. Additional free constants. Notice that there is no c0 coefficient in (3). One could
include a c0 term in the solution, but the value of c0 would not be determined by the
equations; c0 could be chosen freely. Choosing a nonzero value for the c0, however, would
amount to adding a multiple of y1(x) to the solution y2(x) as given in (3).

The situation for Case (iii) is similar. The coefficient dm in (4) will not be determined
during the solution process, and it is simplest to choose dm = 0. Choosing a nonzero value
for dm again amounts to adding a multiple of y1(x) to the solution.

6. An ordinary point. An ordinary point of a differential equation may be considered,
in some sense, as a special case of a regular singular point. If x = 0 is an ordinary point of
(1) then the above analysis applies; one finds that γ(r) = r(r − 1) and hence that r1 = 1
and r0 = 0: we are in Case (iii). However, we already know that in this case there are two
linearly independent solutions, as power series in x, which do not contain lnx; this means
that necessarily C = 0.
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