Turn in starred problems Thursday 11/11/2010.
Section 17.4: 1 (b), $2(\mathrm{c}),(\mathrm{d})^{*},(\mathrm{e})^{*}$ (see comment 1 below!)
Section 18.3: $6(\mathrm{k}),(\mathrm{n})$ (See comments 2 and 3 below), (9)*.
10.A* Do problem 18.3.6(f) but change the boundary conditions to $u(0, t)=u_{x}(2, t)=0$. Keep the same initial condition.
10.B* Do problem 18.3.6(j) but change the boundary conditions to $u_{x}(0, t)=u_{x}(5, t)=0$. Keep the same initial condition.

Comments, hints, instructions: 1. For 17.4:2(d), do only the part of the problem requiring the sketches; you are not required to compute the series for (d). For 17.4:2(e) do the entire problem.
2. Section 18.3: We have not covered all of this section, but in lecture Tuesday $11 / 3$ we discussed using Fourier series in solving the one-dimensional diffusion equation on an finite interval with homogeneous boundary conditions. The parts of 18.3:6 assigned (including 10.A and 10.B) are of this type. In approaching such a problem you must first decide what sort of series to use: half range? quarter range? sine? cosine?
3. Section 18.3: For the parts of problem 18.3:6 assigned (including 10.A and 10.B) you do not have to find the steady state solution, since we have not yet discussed this.

