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0. Introduction In our multivariable calculus course, there is a chapter on vector calculus covering
the gradient of a function of several variables, the curl and divergence of vector fields in three dimensions,
and some integrals that invert these differentiation operators. The different versions of the fundamental
theorem of calculus are treated separately, which emphasizes the technical differences instead of the re-
lation to the fundamental theorem. Chapter 9 of the present text also gives many details. Another source
of information about Vector Calculus is “div, grad, curl, and all that” by h. m. schey (the title page really
is written entirely in lower case), fourth edition published by W. W. Norton, New York, 2005 (ISBN 0-
393-92516-1). Another complete exposition is not needed; these notes only aim to introduce a collection
of exercises illustrating what we need to express the Laplacian in order to work with the classical partial
differential equations in coordinate systems other that the usual rectangular or Cartesian coordinates. The
appearance of the Laplacian in these equations is based on geometric considerations, with the role of coor-
dinates being only to allow it to be evaluated. Thus, it must change its appearance in different coordinate
systems.

1. The del operator In two or three dimensions, formal properties of the differentiation operators
are expressed using
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which operates on the function written to its right. When applied to a scalar function f , it gives a vector
rf , called the gradient of f . If u D f .x; y; z/, then
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Such vector functions are often call vector fields. In addition, the rules used to define vector products give
vector operators that have suggestive notation. For a vector field

F.x; y; z/ D hP.x; y; z/;Q.x; y; z/; R.x; y; z/i;

the curl of F is the vector field

r � F D
˝
Ry �Qz; Pz �Rx;Qx � Py

˛
;

with subscripts used to denote partial derivatives. The divergence of F is the scalar function

r � F D Px CQy CRz;

again with subscripts used to denote partial derivatives.
It is a simple consequence of the definitions that we have the analogs of the product rule:

r.fg/ D f rg C .rf /g

r � .fG/ D f r �G C .rf / �G

r � .fG/ D f r �G C .rf / �G

r � .F �G/ D .r � F/ �G � F � .r �G/
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A great observation is that the fundamental rule
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tells us that r �
�
rf

�
D 0 and r �

�
r � F

�
D 0.

In two dimensions, a formula defining f .x; y/ can be thought of as defining a function of x, y and
z, that just happens to be independent of z. The gradient of f has third coordinate zero and first two
coordinates giving a vector field in the plane. The curl of a vector field that is independent of z with third
coordinate zero has first two coordinates zero, so that its third coordinate can be considered as a scalar
derivative of a two dimensional vector field. It can be related to the divergence by noting that, when applied
to F , it is the divergence of a vector field obtained by rotating F through an angle of �=2 (clockwise).

In higher dimensions, the role of the cross product must be replaced by operators involving things that
might be called multivectors. This is mentioned only as a reminder that special techniques used in low
dimensions may need to be modified for problems in higher dimensions.

2. Line integrals If a force is represented by a vector field (in any number of dimensions), the
work done by that force in moving an object along a path P is computed by an integralZ

P

F � ds D

Z
P

F � T ds

computed by setting ds D T ds D hdx; dy; : : :i on the curve P . If P is given by expressing x; y; : : : as
functions of a parameter t , then dx D .dx=dt/dt as usual to give an integral in terms of t . The chain rule
shows that any parameterization may be used to compute the integral, since all will give the same answer.

If F D rf , the multivariable chain rule shows that the integral is the difference of the values of f at
the endpoints of P , so it is “independent of path”. In particular, the integral is zero if P is a closed curve.

Some convenient parameterizations that can be used to evaluate line integrals are:
(i) line segments. The line segment from .x0; y0/ to .x1; y1/ is given by x D x1t C x0.1 � t /; y D

y1t C y0.1 � t / for 0 � t � 1;
(ii) the ellipse .x=a/2 C .y=b/2 D 1 is given by x D a cos t; y D b sin t for 0 � t � 2� .

A quantitative form of the independence of path for rf is given by Green’s theorem:I
C

P dx CQdy D

“
D

Qx � Py dA

where C is a curve tracing the boundary of the region D in the counterclockwise sense, and dA signifies
integration with respect to area. In rectangular coordinates, dA D dx dy. For simple regions the proof
consists of noting that integrating Qx with respect to x gives the difference of the values of Q at the
endpoints and integrating this result with respect to y is exactly how one computes the path integral of
Qdy, and similarly for the other terms on each side of this formula. Less simple regions need to be cut into
simpler pieces. If a region is cut by a line, the integral over the whole region is the sum of the integrals over
the pieces. To get closed curves, the pieces of the path integral around the boundary need to be completed
with integrals along the cut, but one adds an integral in one direction to one piece and its reverse to the other
piece. The sum of these new terms is zero.

It is important to note that this integral is oriented. Reversing the direction of motion on the boundary
changes the value of the integral to its negative. The two-dimensional integral with respect to area must
also have an orientation. This appears in the proof of Green’s theorem in the consideration of the direction
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followed by the top and bottom as x increases. Reversing the roles of x and y reverses the orientation of
the area integral. In elementary work, this is hidden by using a geometric description of the domain of
integration that leads directly to the appropriate iterated integral.

Green’s theorem can be used to define the integral over the region D with respect to area in terms
of the conceptually simpler path integral around the boundary. One application is a change-of-variables
formula for double integrals. It can also be used in the other direction to evaluate path integrals as double
integrals with an integrand in which a great deal of redundancy has been removed. In particular, we know
that the integral of 1 with respect to area is just the area of the region, and the integral of x is the moment
with respect to the y axis, which is the product of the area with the x coordinate of the centroid. For simple
regions, these are all known on the basis of computations done many times in earlier courses.

In a first course on Multivariable Calculus, exercises usually give one of the integrals related by the
theorem and ask to compute it using the other integral. Usually, the double integral is used for the com-
putation because many different line integrals correspond to a single double integral and some effort has
already been made to find efficient evaluation of double integrals. This is misleading: the direct evaluation
of double integrals as iterated integrals is only the construction of a particular line integral; changing vari-
ables is proved by consideration of the line integrals. In reality, these exercises only replace one line integral
by another one that corresponds to the same double integral. The use of physical properties described in
the last paragraph to recognize integrals that had previously been computed is kept secret. An advanced
study of calculus should include reliable computations to replace error-prone computations based on the
basic techniques of calculus.

3. Changes of variables Suppose that x and y are functions of another pair of variable u and
v. If z is a function of x and y, a multivariable chain rule gives the derivatives of z with respect to the new
variables by a formula that can be written in matrix form as�

zu
zv
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xu yu
xv yv

� �
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zy

�
This expression can be inverted to give�

zx
zy

�
D

1

xuyv � xvyu

�
yv �yu
�xv xu

� �
zu
zv

�
which tells how to directly construct the expressions obtained by evaluating partial derivatives with respect
to the old variables, or combining them into a gradient, and substituting expressions in terms of the new
variables.

A benefit of the use of matrix notation is that the same formula may be interpreted in different ways:
the product of a matrix M and a vector v may be considered as a vector of linear combinations of elements
of v whose coefficients are the entries ofM or a linear combination of the columns ofM whose coefficients
are the entries of v. The latter interpretation leads to a chain rule:

rf D ru
@z

@u
Crv

@z

@v

where z D f .x; y/ that is expressed in terms of the new variables u and v by the change of variables
formula. This is particularly useful where the function f itself has not given, but one has the result of
expressing its result in terms of the new variables. The expressions for ru and rv in terms of u and v are
the columns of the inverse of the change of variables matrix that we constructed.
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An important example is given by polar coordinates, in which the new variables are usually denoted
r and � with x D r cos � and y D r sin � . Then, xr D cos � , yr D sin � , x� D �r sin � , and y� D r cos � .
Then xry� � x�yr D r and

rr D

�
cos �
sin �

�
and r� D

1

r

�
� sin �
cos �

�
This formula is remarkable! Although r D

p
x2 C y2, there is no single formula for � . The usual formula

, � D arctany=x fails to be defined when x D 0. Indeed, there can be no nice function of x and y that
gives � because the value of � should change by 2� when it is extrapolated along a curve that wraps around
the origin.

Given a line integral around a closed curve in the xy-plane

I D

I
P dx CQdy:

and expressions for x and y as functions of new variables u and v so that there is a figure in the uv-plane
that is mapped exactly to the given curve and the region bounded by the curve, we can change variables in
the integral to obtain

I D

I
.Pxu CQyu/ duC .Pxv CQyv/ dv:

Our assumptions allow us to apply Green’s Theorem in th uv-plane to get the double integral with respect
to u and v of

.Pxv CQyv/u � .Pxu CQyu/v D

Pxvu CQyvu C .Pxxu C Pyyu/xv

C.Qxxu CQyyu/yv

�Pxuv �Qyuv � .Pxxv C Pyyv/xu

�.Qxxv CQyyv/yu

D .Qx � Py/.xuyv � xvyu/

Here the first part is the integrand of the original double integral in the xy plane composed with the definition
of x and y in terms of u and v, and the second factor is the local ratio of areas in the two planes. This factor
is called the Jacobian. A negative Jacobian corresponds to a map that reverses orientation.

4. Stokes’ Theorem A surface in 3-dimensional space can be described by giving x, y and
z in terms of two parameters u and v. A region in this surface corresponds to a region in the uv-plane,
and the boundary of the region on the surface corresponds to the boundary of region in the uv-plane. To
parameterize the boundary in the surface, one takes a parameterization of the curve in the uv-plane and
applies the function parameterizing the surface. A simple example will be good enough to illustrate the
nature of the proof: let the surface be the graph of a function, z D g.x; y/, and take x D u and y D v.
Then the projection of the region on the surface and its boundary are the region and curve in the parameter
space.

One side of the Stokes Theorem equation is the integral of a vector field F around a curve C . The
projection of this curve is parameterized by ignoring the third coordinate z. The integral of a vector field is
given by Z b

a

P
�
x.t/; y.t/; z.t/

�
x 0.t/C

Q
�
x.t/; y.t/; z.t/

�
y 0.t/C

R
�
x.t/; y.t/; z.t/

�
z 0.t/ dt;
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where the values t D a and t D b correspond to going once around C in the counterclockwise direction
when viewed from above. Substituting z D g.x; y/ in this givesI �

P
�
x; y; g.x; y/

�
CR

�
x; y; g.x; y/

�
gx.x; y/

�
dx C�

Q
�
x; y; g.x; y/

�
CR

�
x; y; g.x; y/

�
gy.x; y/

�
dy:

Applying Green’s theorem requires calculating the difference of

@

@x

�
Q
�
x; y; g.x; y/

�
CR

�
x; y; g.x; y/

�
g2.x; y/

�
D

Q1
�
x; y; g.x; y/

�
CQ3

�
x; y; g.x; y/

�
g1.x; y/C

R
�
x; y; g.x; y/

�
g21.x; y/CR1

�
x; y; g.x; y/

�
g2.x; y/C

R3
�
x; y; g.x; y/

�
g1.x; y/g2.x; y/

and
@

@y

�
P
�
x; y; g.x; y/

�
CR

�
x; y; g.x; y/

�
g1.x; y/

�
D

P2
�
x; y; g.x; y/

�
C P3

�
x; y; g.x; y/

�
g2.x; y/C

R
�
x; y; g.x; y/

�
g12.x; y/CR2

�
x; y; g.x; y/

�
g1.x; y/C

R3
�
x; y; g.x; y/

�
g1.x; y/g2.x; y/

This simplifies to
.R2 �Q3/.�g1/C .P3 �R1/.�g2/C .Q1 � P2/:

The second factors in these terms are the components of
˝
� g1 ; �g2 ; 1

˛
which is perpendicular to S .

The first factor must then be the components of a vector field being integrated over the surface. Note that the
normalization of our normal vector to have third coordinate 1 signifies upward orientation and integration
with respect to dx dy. These surface integrals are then the integral of a vector field with respect to a vector
element of surface area since the area in the tangent plane to the surface over a small rectangle in the
xy-plane has area equal to the length of the normal vector we found times the area of the rectangle in the
xy-plane.

5. The divergence theorem If a vector field G is the curl of another vector field F , then the
integral of G over a piece of a surface depends only on the boundary , so the integral over a closed surface
will be zero. We have seen that r � G D 0 in this case. The divergence theorem makes this quantitative
by showing that for all vector fields G the integral of G over a closed surface can be expressed in terms of
r �G. More precisely, the surface integral of G is equal to the integral of r �G over the region bounded by
the surface. The proof is essentially the same as the proof we gave for Green’s theorem.

In the plane, an integral through a curve, called a flux integral can be viewed as the integral of the dot
product of the vector field with a unit normal vector with respect to arc length. This interpretation is similar
to considering the usual line integral, a flow integral, as the integral of the dot product of a vector field
with the unit tangent vector with respect to arc length. Thus the flow integral of F is always equal to the
flux integral of the vector field obtained by rotating F through and angle of �=2 clockwise. In particular,
rotatimg a graient vector field through �=s always gives a vector fireld whose divergence is zero. This can
be used to describe the vector calculus of objects expressed in terms of coordiates systems other than the
Cartesian system.
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6. Exercises
A. Given f .x; y/ D ln.x2 C 3y2/, find rf . Note: f .x; y/ is undefined when .x; y/ D .0; 0/.
B. Given AW .0; 0/, B WW .3:0/, C W .3; 1/, the boundary of the triangle ABC is traced in the counter-

clockwise direction by the three intervals AB , BC , CA.
(a) use this description to find I

C

.2xy � 4y/ dx C .2x C 1/ dy

around the boundary C of triangle ABC .
(b) Let T denote triangle ABC , and apply Green’s theorem to write this integral as a double integral

with respect to area over T .
(c) Since we have formulas for the area of a triangle and the location of its centroid, we know“

T

dA D
3

2
;

“
T

x dA D 3;

“
T

y dA D
1

2
:

Use this to evaluate the integral in (b). If this does not agree with the value in (a), there is a mistake
somewhere. Correct any such mistake before considering the exercise complete.

C. Green’s theorem shows that the area of a region with boundary B is given by

1

2

I
B

x dy � y dx

Suppose that B is given in polar coordinates by an equation r D g.�/ for 0 � � � 2� . Determine the
result of using this to express the area as an integral with respect to � . The result should look familiar.

end of supplement
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