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0. Introduction A second order differential equation has a general solution containing two
parameters. Typically these parameters are the values of the solution and its first derivative at a single
point. Under suitable conditions, the theory predicts that such data leads to a unique solution. However,
some natural questions lead to the value of the function at two different points being specified. In such
questions, the function restricted to the interval between those points is the main object of interest, so
these questions are called boundary value problems. If the equation is linear and homogeneous, and the
given boundary values are zero, then a unique solution could only be the zero function. However, there is
no uniqueness theorem for boundary value problems. Indeed, certain homogeneous equations with zero
boundary values have non-trivial solutions.

1. The main example A typical example is

d2y

dx2
C �y D 0Iy.0/ D 0Iy.L/ D 0

for fixed L and a parameter �. If � < 0, write � D �˛2. Then, the general solution of the differential
equation is y D ae˛x C be�˛x . The condition at x D 0 requires b D �a, so the solution is a multiple of
sinh x. This function is strictly increasing, so the condition at x D L allows only the zero function. If � D 0,
the solution is y D a C bx, the condition at x D 0 gives a D 0, and again the solution is a multiple of the
increasing function y D x, and only b D 0 allows y.L/ D 0. If � > 0, write � D ˛2. Then, the general
solution of the differential equation is y D a cos˛x C b sin˛x, and the condition at x D 0 gives a D 0.
However, if ˛ D n�=L, giving � D n2�2=L2, all multiples of sin˛x satisfy the condition at x D L.

The functions that appear in these solutions are exactly the odd functions on �L � x � L appearing in
half range Fourier series.

2. Eigenfunctions There is something more general than Fourier series involved here. The
boundary condition at each endpoints is allowed to be the requirement that some fixed linear combination
of y and y 0 be zero at that point. For example, the boundary value problem

d2y

dx2
C �y D 0Iy.0/ D 0Iy.L/C y 0.L/ D 0

has a non-trivial solution of the form sin˛x when sin˛LC˛ cos˛L D 0. There are still infinitely many such
˛, but they are characterized by ˛ D � tan˛L — an equation that has one root in each interval of the form�
.k � 1=2/�=L; .k C

1=2/�=L
�
. As before, � D ˛2, but there is no simple expression for ˛. It can be shown

by the method used in the first example that only these positive values of � allow nonzero solutions of the
boundary value problem.

In these problems, we are considering the effect of the linear operator d2=dx2 on the linear space
of functions defined on the interval Œ0; L� satisfying certain homogeneous conditions at the boundary
points x D 0 and x D L. We identified functions taken into multiples of themselves by the operator. In
vector spaces, such objects were called eigenvectors with the multiplier being called an eigenvalue, and
in these function spaces the usual name is eigenfunction. In finite dimensional vector spaces, operators
were characterized (in most cases) by their eigenvalues and eigenvectors, so that the behavior at a general
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vector could be found from the eigenvalues and eigenvectors. We aim for a corresponding result in function
spaces.

Computers allow a systematic treatment of these more general problems, and you will use this resource
in applications. However, homework and exams will emphasize problems whose eigenfunctions resemble
Fourier series because they are more familiar and often lead to formulas for the solution.

The properties of the problem that allow a systematic study of its solution are that the second derivative
operator is linear on the space of all smooth functions on Œ0; L�. The differential equation asserts that this
operator takes y to a multiple of itself. In linear algebra, such multiples (which are � for the negative of the
second derivative operator) are called eigenvalues of the operator and the nonzero vectors multiplied by an
eigenvalue are called eigenvectors. When considering operators on spaces of functions, we refer instead to
eigenfunctions.

3. Self-adjoint operators In a finite dimensional space, the eigenvalues and eigenvectors of
an operator given by a symmetric matrix have special properties. All eigenvalues are real numbers and
there is an orthogonal basis of eigenvectors. The analog for differential operators on a space of functions
on an interval I is an equation in self-adjoint form

d

dx

�
r.x/

dy

dx

�
C .q.x/C �p.x//y D 0

where p.x/ and r.x/ are positive on I . The presence of the function p.x/ gives a generalization of the usual
eigenvalue problem, and the eigenfunctions will be orthogonal with respect to the inner product

hf; gi D

Z
I

p.x/f .x/g.x/ dx:

The proof of Theorem 12.3(d) in the text shows how one works with this more general setting.

4. Integrating factors Although the self-adjoint form looks special, an arbitrary second
order operator can be put in that form simply by multiplying by a suitable function that allows the terms
of degree one and two to have the required form. As in other examples of this methods, this function is
called an integrating factor. Indeed, the method of discovery and the expression for this integrating factor
are similar to case of the first order linear equation. Multiplying y 00 C b.x/y 0 by r.x/ gives the derivative
of r.x/y 0 precisely when r 0 D br , so b.x/ must be the derivative of ln r.x/. Thus r is given by integrating
b.x/ and exponentiating the result. On any interval where this can be done, e.g., an interval where b.x/ is
continuous, the result is positive, as required by the general theory.

5. The Sturm-Liouville Theory
The orthogonality of eigenfunctions with respect to the positive weight function p.x/ proved in The-

orem 12.3(d) allows endpoints where r.x/ D 0 as well as those where a boundary condition is prescribed.
This allows examples for which the equation is singular at one or both boundary points and the solution is
required to satisfy a condition at that point limiting attention to a one-dimensional space of functions. The
text gives examples arising from Bessel’s equation and Legendre’s equation. The nature of the boundary
condition leads to simplicity of eigenvalues noted in Theorem 12.3(b). The linear independence of eigen-
functions for different eigenvalues claimed by Theorem 12.3(c) is a general property that has an easy proof
based of a trick: one supposes that a simplest dependence relation has been found; the operator is applied to
it and the result simplified using the fact that the terms are eigenfunctions; these two dependence relations
are then combined to get a simpler non-trivial relation. A deeper study is required for part (a) of the theorem.
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Such a study can be found in Hans Sagan, “Boundary and Eigenvalue Problems in Mathematical Physics”,
Dover Publications, NY (my copy has a price of $17.95 on the cover — Dover aims to publish inexpen-
sive paperback books, many of which were textbooks abandoned by their original publisher). Although a
general proof may be difficult, the verification of the properties is easy in any particular case.

It is conventional to let the eigenvalue be the � in the equation, so the operator is the negative of the
sum of the other terms, i.e.,

�

�
d

dx

�
r.x/

dy

dx

�
C q.x/y

�
This hides the quantity p.x/, but this is the weight function, so it will appear in the orthogonality relation.
Indeed, this weight function should not be hidden since it identifies the problem as an extended form of the
eigenvalue problem that is considered for symmetric matrices.

6. The parametric Bessel equation The Bessel function of the first kind of order � � 0,
denoted J�.x/, satisfies

x2
d2y

dx2
C x

dy

dx
C .x2 � �2/y D 0

with
lim
x!0

x��J�.x/

equal to a particular finite, nonzero value. The method of Frobenius produces a series solution with this
property. See sections 5.6 through 5.8 of the Math 244 text by Boyce and DiPrima or sections 5.2 and 5.3
of the present textbook for details.

The singular point at zero is a natural location for one of the boundaries. To select another boundary,
we note that J�.x/ is an oscillatory function, so setting � equal to the successive solutions of J�.x/ D 0

allow x D 1 to be a boundary at which J�.�x/ D 0. Thus, the functions J�.�x/ D 0 with fixed � and
boundary conditions requiring limx!0 x

��f .x/ to be finite and f .1/ D 0 leads to this sequence of functions.
It remains to find the differential equation satisfied by the J�.�x/, to use that equation to characterize these
as eigenfunctions of some operator, and to show that these functions form a complete basis for functions
satisfying the boundary conditions.

We find an equation satisfied by this sequence of functions and put it in self-adjoint form, but omit the
proof of completeness..

Writing u D �x and w D J�.u/, we have

du

dx
D � and u2

d2w

du2
C u

dw

du
C .u2 � �2/w D 0

Now,
dw

dx
D
dw

du

du

dx
D �

dw

du

and
x
dw

dx
D �x

dw

du
D u

dw

du
:

Similarly,

x2
d2w

dx2
D u2

d2w

du2
:

Thus,

x2
d2w

dx2
C x

dw

dx
C .�2x2 � �2/w D 0
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This equation is known as the parametric Bessel equation.
The integrating factor to put this in self-adjoint form is 1=x, so that form of the equation is

d

dx

�
x
dw

dx

�
C .�2x �

�2

x
/w D 0;

and the eigenfunctions will be orthogonal on Œ0; 1� with respect to the weight x.

7. Legendre polynomials The Legendre polynomials satisfy an equation whose self-adjoint
form is

d

dx

�
.1 � x2/

dy

dx

�
C n.nC 1/y D 0

General properties of series solutions about x D 0 show that one solution is a polynomial of degree n.
Furthermore x D ˙1 are singular points of the equation, and the method of Frobenius shows that these
polynomials are the only solutions bounded a these singular points. Using the Legendre polynomials Pn.x/
as eigenfunctions with eigenvalue n.nC 1/ gives a family of orthogonal functions on Œ�1; 1�.

8. How will this be used? Eigenfunction expansions generalize Fourier series and are
determined using similar methods. Indeed, some are variants on Fourier series corresponding to particular
boundary conditions. However, this is not reason enough to introduce them.

The power of eigenfunction expansions lies in their ability to represent all reasonable functions satisfy-
ing certain boundary conditions and to have a predictable behavior when differentiated. This will justify
the method of separation of variables for solving certain partial differential equations. The theory of
partial differential equations emphasizes boundary value problems since there are only a limited class of
physical situations allowing anything like the initial value problems that were used to organize the study of
ordinary differential equations. A good beginning to this study is a consideration of the role of boundary
data in ordinary differential equations.

Initially, we will consider problems on rectangular regions in the plane, and we will give complete
solutions to some classical equations in that context. In order to apply our methods to other regions, the
problems will need to be described in a way that is independent of coordinates, and then introduce a special
coordinate system to describe the region on which we want to solve the equation. The parametric Bessel
functions and Legendre polynomials will play a role in the study of important regions in two and three
dimensions.
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