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Using the Laplace transform
Spring 2008

0. Introduction The Laplace transform of a function of t is a function of a new variable s
defined by

ˇff .t/g D

Z 1
0

f .t/e�st dt

This is an improper integral, so convergence must be considered. Typically, the integral will exist only for
sufficiently large s, but explicit consideration of this restriction is usually not necessary. The functions that
we will transform are covered by an existence theorem that guarantees that the integral exists for s > a for
a piecewise continuous function f .t/ with jf .t/j < Keat .

In section 4.1 of the textbook, an example was given in which this definition was easy to use:

ˇ
˚
eat
	
D

1

s � a
:

The special case with a D 0 should be noted. However, it will turn out that even these examples are
consequences of general properties of the transform, so that the definition will only be used to derive
general properties. In stating these properties, only the simplest version will be shown; repeated application
will be done as needed rather than used to state results with proofs requiring mathematical induction.
Since the main applications involve very few steps, nothing is gained in most cases by pretending that there
is a general formula.

1. Linearity The most important property of the Laplace transform is linearity. This is a direct
consequence of the linearity of integration. The basic statements are

ˇff .t/g D F.s/ � ˇfc f .t/g D c F.s/

ˇff .t/g D F.s/ and ˇfg.t/g D G.s/ � ˇff .t/C g.t/g D F.s/CG.s/

Repeated use of this rule deals with a sum of arbitrarily many terms, each of which is a product of a
constant and a known function. The generalization to such expressions has been common since the first
course in algebra. Such general expressions are called linear combinations of the known functions.

In addition to determining transforms, it will be necessary to find inverse transforms. Thus, any func-
tion that can be written as a linear combination of 1=.s � a/ can be recognized as the Laplace transform
of a linear combination of eat . The method of partial fractions produces such an expression from some
quotients of polynomials. Quotients of polynomials are called rational functions; and a rational function
is called proper if the degree of the numerator is strictly smaller than the degree of the denominator. The
functions that are Laplace transforms of linear combinations of exponentials are proper rational functions
whose denominator is a product of distinct factors of the form x � a.

In the first course on Differential Equations, solutions of linear differential equations with constant
coefficients were found by assuming a solution of the form y D eat . Some equations had solutions that
were trigonometric functions, and these could be found using Euler’s identity eit D cos tC i sin t . This leads
to

cos t D
eit C e�it

2
and sin t D

eit � e�it

2i



Mathematics 421 Essay 1, p. 2

If we accept these formulas, then

ˇfcos tg D
1

2

�
1

s � i
C

1

s C i

�
D

s

s2 C 1

ˇfsin tg D
1

2i

�
1

s � i
�

1

s C i

�
D

1

s2 C 1

These formulas can also be obtained by characterizing the trigonometric functions as solutions of initial
value problems. We illustrate this in section 3.

2. Derivatives If you use integration by parts in the definition of ˇff 0.t/g, you getZ 1
0

f 0.t/e�st dt D e�stf .t/
ˇ̌1
0
C s

Z 1
0

f .t/e�st dt D �f .0/C sˇff .t/g

provided that limt!1 f .t/e
�st D 0 for sufficiently large s (such f .t/ are said to be of exponent order, and

this has already been assumed to assure the existence of the Laplace transform).
Theoretical aside.The existence of the Laplace transform of a function of exponential order is Theorem 4.2
of the textbook. Theorem 4.5 refines this method of proof to show that the transform always approaches
zero as s !1. In the case in which the transform is a rational function, this says that it is always a proper
rational function. The partial fraction decomposition will then be a sum of proper partial fractions.

Repeated use of this formula gives expressions for the Laplace transform of derivatives of any order,
but it is probably easier to invoke this formula twice to get an expression for ˇff 00.t/g than to remember
the resulting formula, and derivatives of order higher than this will not usually be needed in this course.

An important application of this is the use of Laplace transforms to solve initial value problems. Sup-
pose that y.t/ satisfies a linear differential equation with constant coefficients whose right side has a known
Laplace transform, together with initial conditions at t D 0 that serve to define y.t/ uniquely. Assume that
ˇfy.t/g D Y.s/. Then, the Laplace transform of the left side of the equation is the product of a polynomial
in s times Y.s/ plus another polynomial in s. This polynomial will be of lower degree than the coefficient
of Y.s/. Equating this to the Laplace transform of the right side gives a linear algebraic equation for Y.s/.
If the Laplace transform of the right side is a rational function, then Y.s/ will also be a rational function. It
is also guaranteed to be proper. The solution of the initial value problem is reduced to partial fractions
and some basic examples of Laplace transforms. This often leads to a better organization of initial value
problems, but it gives the same solution that you would find by traditional methods. The factors of the de-
nominator of Y.s/ are determined by the exponential functions that satisfy the corresponding homogeneous
equation and the functions appearing on the right side. In case of repeated factors in the denominator of
Y.s/, the Laplace transform method finds the polynomials multiplying exponential functions in the solution
directly without the use of undetermined coefficients. The whole process is also considerably simpler than
variation of parameters.

Linearity tells us that ˇf0g D 0, so the rule for derivatives gives

0 D ˇf0g D sˇf1g � 1

from which we conclude the previous result that ˇf1g D 1=s. The transform of higher powers can be found
by mathematical induction using the derivative formula for f .t/ D tn which is

nˇ
˚
tn�1

	
D sˇftng

for n > 0.
Applying the rule that Laplace transforms tend to zero as s !1 to ˇff 0.t/g tells us that

lim
s!1

sF.s/ D f .0/

This is an example of information about a function being visible in its Laplace transform.
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3. Examples The function eat is the solution y.t/ of the initial value problem

dy

dt
� ay D 0; y.0/ D 1

If ˇfy.t/g D Y.s/, then the initial condition gives ˇfy 0.t/g D sY.s/ � 1, and the equation asserts that
.s � a/Y.s/ � 1 D 0. Thus, ˇ

˚
eat
	
D 1=.s � a/, as has already been noted.

Similarly, cos t is the solution y.t/ of the initial value problem

d2y

dt2
C y D 0; y.0/ D 1; y 0.0/ D 0

If ˇfy.t/g D Y.s/, then the initial conditions give ˇfy 0.t/g D sY.s/ � 1 and ˇfy 00.t/g D s.sY.s/ � 1/ D

s2Y.s/ � s, and the equation asserts that .s2 C 1/Y.s/ � s D 0.
Another simple example is sin t , which is the solution y.t/ of the initial value problem

d2y

dt2
C y D 0; y.0/ D 0; y 0.0/ D 1

If ˇfy.t/g D Y.s/, then the initial conditions give ˇfy 0.t/g D sY.s/ and ˇfy 00.t/g D s.sY.s//�1 D s2Y.s/�1,
and the equation asserts that .s2 C 1/Y.s/ � 1 D 0.

4. Scaling the argument Consider functions f .t/ and g.t/ related by g.t/ D f .bt/ for some
constant b. Denote the transform of f .t/ by F.s/. Then, the substitution u D bt gives

G.s/ D ˇfg.t/g D

Z 1
0

g.t/e�st dt

D

Z 1
0

f .bt/e�st dt

D

Z 1
0

f .u/e�su=b
1

b
du

D
1

b

Z 1
0

f .u/e�.s=b/u du

D
1

b
F
�
.s=b/

�
As in this computation, the convention of using the corresponding upper case letter to name the Laplace
transform of a function named by a lower case letter is used throughout this subject. Here are some examples
of scaling:

ˇ
˚
eat
	
D
1

a

1

.s=a/ � 1
D

1

s � a

ˇfcos ktg D
1

k

1

.s=k/2 C 1
D

k

s2 C k2

ˇfsin ktg D
1

k

s=k

.s=k/2 C 1
D

s

s2 C k2

This result also tells us the form of the transform of f .t/ D tn. If ˇff .t/g D F.s/, then

1

cn
F.s/ D ˇ

��
t

c

�n�
D cF.cs/:
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That is, multiplying s by c multiplies F.s/ by c�n�1, so that F.s/ is of degree �.nC 1/. Indeed, making the
substitution u D st in the integral defining ˇftng gives the form of the transform and an expression for the
constant factor for arbitrary real values of n > 0. Exercise 41 in section 4.1 asks for the details. This is
also discussed in Appendix II . In the notation of these references to the textbook, we have

ˇ
˚
t˛�1

	
D

Z 1
0

t˛�1e�st dt D

Z 1
0

�u
s

�˛�1
e�u

du

s

with u D st . Thus, the transform is s�˛ multiplied by the constant

�.˛/ D

Z 1
0

u˛�1e�u du:

Integration by parts, as in the process for finding the Laplace transform of a derivative, shows that �.˛C1/ D
˛�.˛/ when both �˛ and �.˛ C 1/ exist. Assuming this property in general extends the definition of �˛ to
all alpha other than the negative integers.

5. Multiplying by an exponential Suppose g.t/ D eatf .t/. Then

G.s/ D

Z 1
0

e�steatf .t/ dt D

Z 1
0

e�.s�a/tf .t/ dt D F.s � a/

In particular,

ˇ
˚
eat cos bt

	
D

s � a

.s � a/2 C b2
and ˇ

˚
eat sin bt

	
D

b

.s � a/2 C b2

Expand these formulas to simplify the expressions for the transforms. Use completing the square to return
to this form when computing an inverse Laplace transform. In particular, combining this section with the
previous one allows the Laplace transforms of all tneat cos bt and tneat sin bt to be found from the special
cases in which a D 0 (and b D 1 if the trigonometric factor is present). Finding inverse transforms uses
standard algebraic techniques to recognize the relation between the given expression and the transform of a
simpler one.

The transforms of tn cos t and tn sin t for n > 0 require more care. Complex numbers provide the fastest
route to formulas for the transforms.

ˇftn cos tg D
1

2

�
1

.s � i/nC1
C

1

.s C i/nC1

�
ˇftn sin tg D

1

2i

�
1

.s � i/nC1
�

1

.s C i/nC1

�
These fractions may be combined over a common denominator of .s2 C 1/nC1, but the numerators consist
of the sum of alternate terms in the expansion of .s ˙ i/nC1. The binomial theorem gives an efficient
computation of the terms, but there are still roughly n=2 terms in each of the numerators of the transforms.

This also leads to a difficulty when computing inverse transforms with these denominators because the
simplest transforms are not in the form of linear expressions divided by powers of x2 C 1 as produced by
the usual partial fraction decomposition. In place of this, there is a particular polynomial of degree 2n that
appears in the transform of tn cos t or one of degree 2n C 1 that appear in the transform of tn sin t . When
finding an inverse Laplace transform, one first determines the terms containing tn to leave a problem of
finding an inverse transform of a expression with a lower power of x2C 1 in the denominator. This could be
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done with an arbitrary quadratic factor, but it is probably better to use completing the square and scaling
to reduce to the this special case before attempting this analysis.

When n D 1, the quadratic formula gives

ˇft cos tg D
s2 � 1

.s2 C 1/2
D
.s2 C 1/ � 2

.s2 C 1/2

D
1

s2 C 1
�

2

.s2 C 1/2

ˇft sin tg D
2s

.s2 C 1/2

From this, we see that ˇfsin t � t cos tg D 2.s2 C 1/�2.

6. Series Assuming that the operations (essentially an interchange of limits) can be justified, the
formula ˇftng D nŠs�n�1 leads to

ˇ

(
1X
nD0

ant
n

nŠ

)
D

1X
nD0

an

snC1

This allows all coefficients of the Taylor series for f .t/ about t D 0 to be related to those in a series
expansion of F.s/ in powers of s�1 — which could be called a series expansion at infinity. The expansion
of f .t/ is required to be very strongly convergent because of the nŠ in the denominator, in order to allow
the series for F.s/ to converge anywhere. However, these conditions are satisfied for the solutions of
linear differential equations with constant coefficients that are the main examples used for f .t/. Laplace
transforms are typically defined only for s > c for some c, so a series for the transform should have the
same property. This requires that the coefficients an should grow no faster than cn.

In particular,

eat D

1X
nD0

an
tn

nŠ

so that

ˇeat D

1X
nD0

an

snC1

D
1

s

1X
nD0

�a
s

�n
D
1

s

1

1 � a
s

D
1

s � a

An interesting example is the Bessel function of order zero. This function satisfies

ty 00 C y 0 C ty D 0:

This equation is singular, but the method of Frobenius assures us that there is a unique solution with
y.0/ D 1, and it gives a series for this solution that converges for all t . In fact, there is a recurrence for the
coefficients that allows the coefficient of tn to be compared to 1=nŠ.

The coefficients of this differential equation are polynomials in t and not constant, so the formula to be
discussed in Section 19 below produces a differential equation for the Laplace transform of this function.
That equation turns out to be first order, so there is a standard method to get a closed form solution.

On the other hand, the recurrence determining the terms of the series for y.t/ can also be used to find
the terms of a series for Y.s/. It is an interesting exercise to show that the closed form solution for Y.s/ is
represented by the series found in this way.
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7. Partial fractions
If a Laplace transform is a rational function has a denominator

Q
.s � ˛i /, with n factors, then the

numerator has degree less than n because the function must have limit zero as s ! 1. Such rational
functions are called proper by analogy to arithmetic proper fractions that have numerators that are smaller
than their denominators. The inverse Laplace transforms of such expressions can be found using the partial
fraction decomposition that was used to integrate such expressions. In the case in which all factors of the
denominator are different linear factors the decomposition is easily found by the method that the text calls
the “cover up method” (page 205). In this method, a proper rational function is written as a sum of simpler
expressions of the same type:

P.s/

.s � a/Q.s/
D

A

.s � a/
C
P1.s/

Q.s/
.�/

where Q.a/ ¤ 0 (indicating that .s � a/ does not divide Q.s/), and all fractions are proper fractions. Multi-
plying by .s � a/ and evaluating at s D a gives

A D
P.a/

Q.a/
: .��/

This works because a proper fraction with a linear denominator has a constant numerator.
The partial fraction decomposition is a special case of the fact that, if Q0.x/ andQ1.x/ are polynomials

over a field (an algebraic system like the real numbers, complex numbers or rational numbers that allows
addition, multiplication and division — except that division by zero is not allowed) have no common factors
(other than constants), then there are polynomials A0 and A1 (with coefficients in the same field) such that

A1Q0 C A0Q1 D 1:

The proof uses the Euclidean algorithm, which also gives an efficient computation A0 and A1. If the degree
of A0 in such an equation is of the same degree as Q0 or larger, then one can subtract a certain multiple of
Q0 from A0 and add the same multiple of Q1 to A1 to get other choices of A0 and A1 with the same property
and having the degree of A0 less than the degree of Q0. In this case, the degree of A1 will automatically be
less than the degree of Q1. If this equation is divided by Q0Q1, the result is a partial fraction decomposition
of 1=.Q0Q1/ as a sum of proper fractions whose denominators are Q0 and Q1.

This equation also gives
.PA1/Q0 C .PA0/Q1 D P:

for any polynomial P . If the degree of P is less than the degree of Q0Q1, the use of division to replace PA0
by a polynomial of degree less than the degree of Q0, with a corresponding change in the other term, leads
to a partial fraction decomposition of any proper fraction with denominator Q0Q1 as a sum of a proper
fraction of denominator Q0 and a proper fraction with denominator Q1. All that is needed is that Q0 and
Q1 have no common factor. In the simplest case of the Euclidean Algorithm, one gets

1 � .x � a/C .�1/ � .x � b/ D b � a:

The general method and the cover-up method are almost identical in this case.
Note that each linear factor of the denominator is determined separately by this method. If there are

any irreducible quadratic factors or repeated linear factors in the denominator, they can be left until all
simple linear factors have been removed by using .��/ to identify the numerator in the first term on the right
side of .�/ for each simple linear factor and subtracting that term to leave a simpler fraction. In finding the
numerators for each factor of the denominator, the original numerator P.x/ may be used for all factors with
an appropriate choice of Q.x/ for each factor.
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Linear fractions of higher multiplicity can be handled by the following variant on .�/

P.s/

.s � a/kQ.s/
D

A

.s � a/k
C

P1.s/

.s � a/k�1Q.s/

Here, multiplication by .s � a/k and evaluating at s D a again gives .��/ although a factor of .s � a/k�1

remains in the denominator. This allows a linear factor of multiplicity k to be removed in k steps, provided
that the complementary term is found as part of each step.

If there is only one quadratic factor, the terms belonging to the other factors of the denominator can be
found are subtracted from the original expression. When common factors are removed, the result will have
only this factor in the denominator. However, there seems to be no easy way to deal with more than one
quadratic factor.

8. Systems A system of differential equations with the same number of equations as there are
functions to be determined, together with suitable initial conditions, can be solved by applying Laplace
transforms to replace the system by a system of linear algebraic equations for the transforms of the solutions.
In many cases, a solution of these equations can be found directly. This requires no modification of the
system prior to applying the Laplace transform. For example, if there are only two equations (and only two
unknown functions), the simple formula for the inverse of a 2-by-2 matrix gives a formula for the Laplace
transform of the solution with little effort. The study of the double pendulum gives a striking example of
this method.

9. An example Exercise 10 in section 4.6 asks to use Laplace transforms to solve

dx

dt
� 4x C

d3y

dt3
D 6 sin t

dx

dt
C 2x � 2

d3y

dt3
D 0

with initial conditions x.0/ D y.0/ D y 0.0/ D y 00.0/ D 0. If ˇfx.t/g D X.s/ and ˇfy.t/g D Y.s/, then the
initial conditions give ˇfx 0.t/g D sX.s/ and ˇfy 000.t/g D s3Y.s/, so Laplace transform of the equations may
be written in the simple matrix form�

s � 4 s3

s C 2 �2s3

� �
X

Y

�
D

1

s2 C 1

�
6

0

�
D

6

s2 C 1

�
1

0

�
The determinant of the coefficient matrix is

s3
�
�2.s � 4/ � .s C 2/

�
D �3s3.s � 2/

and the cofactor expression for the inverse gives�
X

Y

�
D

2

s3.s � 2/.s2 C 1/

�
2s3

s C 2

�
Thus,

X D
4

.s � 2/.s2 C 1/
D

4=5
s � 2

�

4=5 .s C 2/

s2 C 1

where the first term is found by the cover-up method, and the second by simplifying the difference of the
left side and the first term, which is

20 � 4.s2 C 1/

5.s � 2/.s2 C 1/
D

16 � 4s2

5.s � 2/.s2 C 1/
D
�8C 4s

5.s2 C 1/
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From the basic transform pairs, we get

x.t/ D
4

5
e2t �

4

5
cos t �

8

5
sin t

x 0.t/ D
8

5
e2t �

8

5
cos t C

4

5
sin t

y 000.t/ D
8

5
e2t �

8

5
cos t �

6

5
sin t

where the first line is the inverse transform of X.s/, the second line is found by differentiating x.t/ and
the third line is the common value found by solving each equation in the original system algebraically for
y 000.t/. This checks that x.t/ is a solution of the differential equations, and it is easy to see that it satisfies
x.0/ D 0. From this, one could integrate — keeping track of the initial conditions — to find y.t/. However,
we want to illustrate the use of partial fractions to write

Y D
2s C 4

s3.s � 2/.s2 C 1/
D
A.s/

s3
C

b

s � 2
C

C.s/

s2 C 1

with A of degree 3 and C of degree 1. The cover up method produces terms of

1

5.s � 2/
D

s3.s2 C 1/

5s3.s � 2/.s2 C 1/

�2

s3
D
�10.s � 2/.s2 C 1/

5s3.s � 2/.s2 C 1/

With the denominator of the expressions on the right, including the numerical constant 5, the original
numerator of Y.s/, found in the matrix solution, is 10sC20. Subtracting the two numerators above from this
gives �s5 C 9s3 � 20s2 C 20s. This is clearly divisible by s, and it must be divisible by s � 2 if our work is
correct. Division reveals it to be s.s � 2/.�s3 C 2s2 C 5s � 10/. The unidentified partial fractions add to

�s3 � 2s2 C 5s � 10

5s2.s2 C 1/

Another application of the cover up method gives a term of �2=s2 D �10.s2 C 1/
ı �

5s2.s2 C 1/
�
. Sub-

tracting this leaves .�s2 C 8s C 5/
ı �

5s.s2 C 1/
�
. After one more step, we have the full partial fraction

decomposition

Y.s/ D
1

5

1

s � 2
�
2

s3
�
2

s2
C
1

s
C

8 � 6s

5.s2 C 1/

Taking inverse transforms gives

y.t/ D
1

5
e2t C 1 � 2t � t2 C

8

5
sin t �

6

5
cos t:

From this, it is easy to obtain values of y 0, y 00, and y 000 to check all initial conditions and the previously
discovered value of y 000.

10. The derivative of a transform Assuming the validity of differentiating with respect
to the parameter s under the integral sign, one has

F 0.s/ D
d

ds

Z 1
0

f .t/e�st dt D

Z 1
0

�tf .t/e�st dt D �ˇftf .t/g:
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In particular,

ˇft sin tg D �
d

ds

1

s2 C 1
D

2s

.s2 C 1/2

ˇft cos tg D �
d

ds

s

s2 C 1
D

s2 � 1

.s2 C 1/2

This agrees with the results obtained using partial fractions over the complex numbers. Neither approach
provides a simple way to evaluate inverse transforms of expressions with denominator .s2 C 1/n for large
values of n. Symbolic calculation systems like Maple have routines for handling this case, but there may
not be a suitable general method for hand computation. The only expressions that are suitable for hand
computation are of low enough degree that there are few opportunities for complicated expressions to arise.

11. Functions defined by cases There is one more formula for Laplace transforms that
is part of the general toolbox. If a function of t is zero for t < a and given by some formula for larger t ,
the Laplace transform integral is best evaluated by the substitution t D a C u. This introduces a factor of
e�as and changes the integral to an integral in u from zero to infinity. This integral is the ordinary Laplace
transform of the expression for our function in terms of u. To write this as a formula, we introduce the
Heaviside function U.t � a/, defined by

U.t � a/ D

�
0 if t < a
1 if t � a

Then, for a � 0,
ˇff .t � a/U.t � a/g D e�asF.s/:

The proof of this formula consists of rewriting the definition of ˇff .t � a/U.t � a/g as follows

ˇff .t � a/U.t � a/g D

Z 1
0

f .t � a/U.t � a/e�st dt

D

Z 1
a

f .t � a/e�st dt

D

Z 1
0

f .u/e�s.aCu/ du D e�asF.s/

The first step uses the definition of U.t � a/ to restrict the domain of integration; then a new variable
is introduced that goes from 0 to 1 on this domain; and the result is interpreted in terms of the known
transform of f . Note that there is an implicit factor of U.t/ whenever we are taking a Laplace transform
since only values of t > 0 are considered when evaluating the integral in the definition of the Laplace
transform.

Any function defined by cases may be written in an equivalent form using Heaviside functions. If the
expression defining the function changes at t D a, a term is introduced with factor of U.t � a/ multiplying
the change from the expression used for x < a to the one used for x > a.

To retrieve a definition by cases from one using Heaviside functions, the value in each interval is the
sum of the expressions multiplying U.t � a/ with smaller values of a.

When using this formula to find Laplace transforms, one must be careful to express the quantity multi-
plying U.t�a/ as a function of t�a. The alternate formula in formula .6/ on page 213 of the text should not
be used. It is always dangerous to try to work with two formulas that are minor variations of one another
since you can wind up with a meaningless mix of parts of each formula. In most cases, it is easy to see how
to write the expression multiplying U.t �a/ in terms of t �a, so there is no need to try to develop a formula
for the process.
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When finding inverse transforms, terms with the same e�as factor are collected together and the inverse
transforms of each of these clusters is found separately. In applications to differential equations, this usually
finds a continuous solution even when there is a discontinuous driving force.

A convenient way to work with this is to use a graphical description of the function. If the graph of
f .t/ if known, then the graph of f .t � a/U.t � a/ is found by translating the known graph a units to the
right.

As an example, consider

f .t/ D

8<:
t if 0 < t < 1
2 � t if 1 < t < 2
0 if t > 2

whose graph consists of line segments from .0; 0/ to .1; 1/, from .1; 1/ to .2; 0/ and then a ray along the
horizontal axis to the right.

Instead of working with formulas, we use a graphical method of finding F.s/ starting from the function
g.t/ D t with G.s/ D 1=s2. Translating this graph one unit to the right gives a parallel line representing the
graph of g.t � 1U.t � 1/ having a Laplace transform of e�s=s2. Subtracting the second function from the
first gives a line from .0; 0/ to .1; 1/ followed by a horizontal ray. The Laplace transform of this function is�
1 � e�s

� ı
s2. Translating this graph one unit to the right gives a line from .1; 0/ to .2; 1/ followed by a

horizontal ray. The Laplace transform of this function is e�s
�
1 � e�s

� ı
s2. Subtracting the second function

from the first gives the desired function and shows that its Laplace transform is
�
1 � e�s

�2 ı
s2.

An extension of this method invents generalized functions like the Dirac delta function ı.t � a/ that
acts like a derivative of the Heaviside function. Physically, it plays the role of an impulse that effects
an abrupt change in momentum when the terms in the equation represent forces. Its Laplace transform is
e�as . It may be used formally in a solution of differential equations by Laplace transforms and gives rise to
a continuous solution of the equation. When made rigorous, this shows that any physically realizable force
approximating an impulse leads to motion approximating this solution.

12. Convolution There is one more operation inspired by the study of Laplace transforms. The
convolution of f .t/ and g.t/, denoted by .f � g/.t/ is defined by

.f � g/.t/ D

Z t

0

f .�/g.t � �/ d�

A change of variables in the sector defined by 0 < � < t <1 in the .�; t/ plane shows that ˇf.f � g/.t/g D

F.s/G.s/. This is the subject of theorem 4.9 of the text.
The case where g.t/ D 1 gives

.f � g/.t/ D

Z t

0

f .�/ d�:

Since G.s/ D 1=s in this case, we have

ˇ

�Z t

0

f .�/ d�

�
D
F.s/

s
:

Note that the function on the left side of this equation has derivative f .t/ by the fundamental theorem of
calculus and is zero at t D 0. Hence, this special case is an alternate form of the formula for the transform
of a derivative.

An application to the Volterra integral equation in Section 4.4 (page 222) is a striking use of the idea
of convolution.

Little more needs to be added to the treatment in the textbook except to note that it may be easier the find
the inverse transform of a product of two transforms using partial fractions than to compute a convolution
directly.
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12. Summary Note that more than one rule may apply to a given expression. Since all rules are
consequences of the definition, you can be sure that any correct application of the rules will determine
the same expression for the Laplace transform or its inverse. The availability of alternate methods of
computation should be used as an opportunity to check your work and your understanding of all the rules
for working with Laplace transforms.
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