Mathematics 373 Workshop 3 Solutions
Quadratic Convergence
Fall 2003

Introduction Given a functionf (x), the solutions off (x) = 0 can be found by iterating

f(x)

N(X) =X — 00"

Such an iteration is calledewton’s method If X is a solution off (x) = 0, thenN (X») = X and

f(X) = f(X0)
N(x)—xoo=x—xoo—T.
If f(x) is bounded away from zero on an interval containingxhea sequence defined By, 1 = N(Xp)
converges to a value,, and Taylor’'s formula based &,

(&) (Xoo — Xn)?

f(Xoo) = F(Xn) + (Xoo — Xn) T/ (Xn) + > :

leads to

f//(%‘) ( L= X )2

Xn+1—Xoo=—2f,(Xn) X

for some real numbey betweerx, andx... This essentially doubles the number of correct decimal places
at each step, as long as the initial value is close enough,to

Problem 1 Consider the function

h(x)=¥ O<x<m

where we have restricted to an interval on whigtx) decreases from 1 to 0. If we defih€¢0) = 1 and

use the formula for other values, the function has derivatives of all orders, so we may speak of the value of
derivatives ofh at zero. Sincda(x) is a decreasing function, it has an inverse function that we willkcall

The domain ok is [0, 1] andk is defined byk(y) = x if h(x) = y and 0< x < &. Our task is to devise

a process to computga) for any givena € [0, 1]. This will be done by formulating this problem as a
rootfinding problem that can be solved by Newton’s method.

la Statement One way to findk(a) is to setf (x) = h(x) — a. This has the advantage that
there is a unique solution tb(x) = 0 for alla € [0, 1]. It can be shown that”(x) increases fronr1; at

x = 0 to approximately-0.203 atx = 7, SO that{ h”(x)| < 15 for 0 < x < =. Unfortunatelyh’(0) is zero,
so there is a bound on the error only fobounded away from zero. Find a bound cxrﬂl/(x)\ forx > 0.3
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1la Solution  The claims about the behavior bf(x) andh”(x) are based on

cosSX  sinx
f’f)=h'(x) = — — ——
00 =h0)===-=73
sinx 2cosx  2sinx
f//(x) — h//(x) - _ _ 2 + 3
X X X

For 0 < X, h’(x) < 0 is equivalent to sim > xcosx. Forx < m/2, cosx > 0 and this is equivalent to
tanx > X, which follows from the fact that tax — x is zero atx = 0 and its derivative is always positive.
Form/2 < x < 7, we need ta < X, which follows from tarx < 0 < X.

The study oth”(x) is more complicated. It can be rewritten as

h"(x) = x3((2 — x?) sinx — 2x cosx ).

This can be studied by considering arc(@x/(z — xz)) on various intervals.

So much forbackground information — here is what we needs to be done. Sih€éx) increases
from a negative value to a positive value, it is zero somewhere on our domain. Fkxigjs initially
decreasing, then increasing. The minimumhéix) is attained at an interior point and the maximum is
attained at an endpoint. We havé0.3) = —0.099102888 anti’(7) = —0.3183098861, so theaximum
is thenegativevalue—0.099102888. The negative of this gives a lower boundhﬁfx)\ and the reciprocal
of that— 1009052330 — is the desired upper bound ¢|1|h[(x) | Since only ampper bound is required,
we can use thenore convenientvalue of 101.

1b Statement Sinceh(0.3) &~ 0.985, Newton’s method fof (x) has a uniform error estimate
for values ofa smaller than this. If one starts wikfy = 2.081575978 — the location of the inflection point
— the sequencg, always moves towards,,. Use this to give a bound on the number of steps required to
computek(a) to 8 decimal places for al with 0 < a < 0.985.

1b Solution To get a uniform error estimate on the error in Newton’s method, we can use our
upper bounds of; on | f”(£)| and 101 on|1/f’(x)| in our formula forx,+1 — X« to get

2
[Xn4+1 — Xool < 1.7 [Xn — Xl

where we have again rounded up to get a number that is easier to write.
This inequality may be rewritten as

2
1.7 Xn41 — Xool < (1.7 %0 — Xoo| )"

Induction on this shows that, if.1|Xg — Xs| < K, then 17 |Xn — Xeo!| < k2" for all n. (Thebasiscase
n = 0 is the definition ok, and the step from to n 4 1 follows from the displayed inequality.) This is only
useful ifk < 1, but we will show how to reduce the general case to this special case.

Before proving anything, we should find out what is true. It seems plausible that the extreme values
of a = 0 anda = h(0.3) ~ 0.985 would take the largest number of steps. Wth- 0, four steps are
required: (start) 281575978, (step 1).842386451, (step 2).B38766291, (step 3).841590118, (step 4)
3.141592654, which agrees withto more than 8 decimal places (the distance &t the previous step was
about 25 x 107%). With a = h(0.3), six steps are required: (start081575978, (step 1).083999428,
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(step 2) 04403481391, (step 38217480269, (step 4).8007207552, (step 5).8000008468, (step 6)
0.2999999972 (the distance tBat the last step is about310~°). Roundoff error has made the last value
appear to overshoot the target.

This empirical investigation is all that was expected at this stage. A careful error analysis is more
difficult. The biggest danger is that this analysis will dbe=rsimplified, leading to conclusions that are
too good to be true You should never put kot of effort into an analysis to conclude thatitle more
computation is unnecessary. Error analysis shawierestimatethe error to give areasy proofthat a
reasonableeffort will surely give an answer that meets specifications.

These calculations were done in Maple using the default precision of 10 decimal places. Repeating the
calculation with extended precision reveals that the calculatidi{@B) gave a value that was slightly too
large, so that the root was slightly smaller than expected.

Now, let’s try to show that we reach the root to within£0in at most 6 steps for ang. Our error

estimate shows that this will be truekf= 1.7 |Xg — Xxo| satisfiesk?® < 1078, Taking logarithms, this
is equivalent to 641k < —8In10. Thus Ik < —(In10)/8 ork < 1018 ~ 0.74989. Taking this
distance on either side of the valuex@fthat we decided to use in all cases shows that six steps suffice for
1.332 < X < 2.831. This gives the desired accuracy in six steps fb08 < a < 0.729

To extend these results, we note that the form of the function iterated in Newton’s method shows that
the result is an increasing function affor eachx (becausé’(x) < 0). Thus, ifa is outside the interval
that we found, one step will take us at least as far aidfid been .08 or 0729. The resulting values af
are 2795 (for smalla) and 1370 (for largea). Then, one needs to see how far one can get from héiesin
steps. The value & is now determined by 32k < —81n 10, ork < 10~%/4 ~ 0.56234. Convergence is
now guaranteed for.8074289988< x,. The calculation of the right endpoint gave a value greater than
that of the interval used to formulate the estimates, so we can only conclude validity<fax & 0.895
(the latter value being a conveniemiward rounding ofh(0.8074289988). Because of the cautious nature
of the estimates, it may not be possible to use this approaghote that six steps suffice in all cases.
However, for largen, even if six steps won't give the answer to the required accutacysteps will lead
to x2 < 0.89302 and we have seen that we can solve all relevant equations in six steps from this point. The
solution has thus been guaranteed in a totalight steps.

1c Statement  Asimplerfunctionisf (x) = sinx—ax. This has the disadvantage tifa0) = 0,
while we are always looking for thether place wheref (x) = 0. Find a method that will guarantee that
the Newton iteration determined by this function will convergé¢a). Find a rule for choosingo and
bound on the number of steps of this iteration required to comkaieto 8 decimal places for all with
0<a<0.985.

1c Solution For alla, this f (x) is concave downward between 0 andavith inflection points at
both ends of this interval, and the maximum point lies between 0 and the desired root. A uniform method
of solving the equation is to start witlhy = 7. Then, iterating the Newton function— f (x)/f’(x) gives a
decreasing sequence that converges to the positive rdaixof= 0. Again, we suspect that= 0.985 will
exhibit the slowest convergence. Calculating gives the sequegce: 3.141592654x, = 1.582666325,
X2 = 1.021914236x3 = 0.6906204033x4 = 0.4886790201xs = 0.3721739656%s = 0.3169948089,
x7 = 0.3018505633xg = 0.3006856430x9 = 0.3006788963.

Uniform estimates based on the error estimate for Newton’s method are more difficult to find in this
case becaugd’(x)| can be smaller than03 fora near 0985. With a uniform upper bound f ”(¢)| < 1,
we have

2
IXn+1 — Xool < 16.82[Xn — X0l s
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16:82Xn11 — Xoo| < (16.82]%n — Xool)°.

Thus, the benefits of quadratic convergence are seen only when very close to end of the computation. We
also notice that there is little benefit in modest changes in the choigdi&e usingxy = 7 /2 fora > 2/,
since one or two steps starting from = 7 leads to smaller values.

Problem 2 Steffensen’s method, which calls for formimg = g(po) and p2 = g(p1), and
then X
B (P1 — Po)
D= P, 2p+ po
is described asccelerating convergence

2a Statement  Here is an example of the primary use of Steffensen’s method. If a funttion
has a zero of multiplicity greater than 1, Newton’s method is no longer quadratically convergent. Example
2 in section 2.4 investigates the Newton iteration constructed to find the root of

ef—-x—-1

atx = 0. This is atoy example— you know that the process should converge to zero. The example
suggesténear convergence Use Steffensen’s method to produce a quadratically convergent iteration from
the iteration of this example. (Note that the function being iteratedishownin the text, so you will need

to construct it.)Show all intermediate stepdn the computation of the Newton function and the Steffensen
function. The accuracy to which those quantities can be computed play a role in the behavior of these
methods.

2a Solution  Thefirst step is to findN (x) = x — f(x)/f’(x) when f (x) = e — x — 1:

ef—x—-1

N =x- =57~

Computations should ug€(x) in the form shown, but analysis of its properties may use expressions that
are algebraically equivalent. This allows L'Hépital’s rule to be used to show that

N 1
jim ) _ 2
x—=0 X 2

by writing oo
N (X) _ Xet—e" + 1
X  Xxe—-x

(Actually, the use of Taylor's theorem on the numerator and denominator of this expression is more efficient:

NOX)  3x2+ 003
X X2+ 0(x3

whereO(x3) stands for “terms of degree 3 or more”).
Iterating this function gives values that agree with the table shown in the textbook, and the limit that
was just calculated shows thhlf(x) ~ x/2, confirming the observation that this sequence appears to be
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linearly convergent to zero with ratiory2. As in the text, we start witlpp = 1. The rows of the following
table showpg, p1, p2 from the application ofN (x), and each new row begins with tipg computed from
the triple on the row above.

Po P1 p2

1. 0.5819767070 (3190550411
—0.126638558  —0.06198319467 —0.03067145206
—0.0012677701 —0.0006339729082 —0.0003168241544

8.25704x 10~/

Iterating N (x) would divide an entry by 2 to get the next entry in a row. The next Steffensen step may not
be possible because the denominator will be so small that it will look like zero.

2b Statement  Ifthe goal is to get accuracy to with 16, how many steps will be required using
Newton’s method, and how many steps using the accelerated method? What accuracy would be needed in
each of these computations?

2b Solution In this case, Newton’s method is only linearly convergent with régicand we
started at distance 1 form the root, so the distance to the roofiaffern steps. To get2" < 10 requires
—nin2 < —6In10 orn > 6In10/In2 ~ 19.93156857. Sinca is an integer, it must be at least 20. A
more precise error estimate might require a larger ratio, leading to a few more steps.

2c Statement Under some circumstances, Steffensen’s method is able to tdiveegent
process into a convergent one. Experiment with) = cog2x) and various choices of starting value.

2¢ Solution Start withpg = 0 and construct a table in the same format as in 2a.

Po P1 p2

0. 2. —0.8322936730
0.8277642608 B53047788 (1320637532
1.018546929 1049207144 (0965172662
1.029825246 1029937307 029745181
1.029866529 1029866530 1029866528
1.029866529

End of Workshop 3
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