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Introduction Given a functionf (x), the solutions off (x) = 0 can be found by iterating

N(x) = x −
f (x)

f ′(x)
.

Such an iteration is calledNewton’s method. If x∞ is a solution off (x) = 0, thenN(x∞) = x∞ and

N(x) − x∞ = x − x∞ −
f (x) − f (x∞)

f ′(x)
.

If f ′(x) is bounded away from zero on an interval containing thexn, a sequence defined byxn+1 = N(xn)

converges to a valuex∞ and Taylor’s formula based atxn,

f (x∞) = f (xn) + (x∞ − xn) f ′(xn) +
f ′′(ξ)(x∞ − xn)

2

2
,

leads to

xn+1 − x∞ = −
f ′′(ξ)

2 f ′(xn)

(
xn − x∞

)2

for some real numberξ betweenxn andx∞. This essentially doubles the number of correct decimal places
at each step, as long as the initial value is close enough tox∞.

Problem 1 Consider the function

h(x) =
sinx

x
(0 < x ≤ π)

where we have restricted to an interval on whichh(x) decreases from 1 to 0. If we defineh(0) = 1 and
use the formula for other values, the function has derivatives of all orders, so we may speak of the value of
derivatives ofh at zero. Sinceh(x) is a decreasing function, it has an inverse function that we will callk.
The domain ofk is [0, 1] andk is defined byk(y) = x if h(x) = y and 0≤ x ≤ π . Our task is to devise
a process to computek(a) for any givena ∈ [0, 1]. This will be done by formulating this problem as a
rootfinding problem that can be solved by Newton’s method.

1a Statement One way to findk(a) is to set f (x) = h(x) − a. This has the advantage that
there is a unique solution tof (x) = 0 for all a ∈ [0, 1]. It can be shown thath′′(x) increases from−1/3 at
x = 0 to approximately+0.203 atx = π , so that

∣∣h′′(x)
∣∣ ≤ 1/3 for 0 ≤ x ≤ π . Unfortunately,h′(0) is zero,

so there is a bound on the error only forx bounded away from zero. Find a bound on 1/
∣∣h′(x)

∣∣ for x ≥ 0.3
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1a Solution The claims about the behavior ofh′(x) andh′′(x) are based on

f ′(x) = h′(x) =
cosx

x
−

sinx

x2

f ′′(x) = h′′(x) = −
sinx

x
−

2 cosx

x2
+

2 sinx

x3

For 0 < x, h′(x) < 0 is equivalent to sinx > x cosx. For x < π/2, cosx > 0 and this is equivalent to
tanx > x, which follows from the fact that tanx − x is zero atx = 0 and its derivative is always positive.
Forπ/2 < x < π , we need tanx < x, which follows from tanx < 0 < x.

The study ofh′′(x) is more complicated. It can be rewritten as

h′′(x) = x−3( (2 − x2) sinx − 2x cosx
)
.

This can be studied by considering arctan
(

2x/(2 − x2)
)

on various intervals.
So much forbackground information — here is what we needs to be done. Sinceh′′(x) increases

from a negative value to a positive value, it is zero somewhere on our domain. Thus,h′(x) is initially
decreasing, then increasing. The minimum ofh′(x) is attained at an interior point and the maximum is
attained at an endpoint. We haveh′(0.3) = −0.099102888 andh′(π) = −0.3183098861, so themaximum
is thenegativevalue−0.099102888. The negative of this gives a lower bound on

∣∣h′(x)
∣∣ and the reciprocal

of that — 10.09052330 — is the desired upper bound on 1/
∣∣h′(x)

∣∣. Since only anupper bound is required,
we can use themore convenientvalue of 10.1.

1b Statement Sinceh(0.3) ≈ 0.985, Newton’s method forf (x) has a uniform error estimate
for values ofa smaller than this. If one starts withx0 = 2.081575978 — the location of the inflection point
— the sequencexn always moves towardsx∞. Use this to give a bound on the number of steps required to
computek(a) to 8 decimal places for alla with 0 ≤ a < 0.985 .

1b Solution To get a uniform error estimate on the error in Newton’s method, we can use our
upper bounds of1/3 on

∣∣ f ′′(ξ)
∣∣ and 10.1 on

∣∣1/ f ′(x)
∣∣ in our formula forxn+1 − x∞ to get

|xn+1 − x∞| < 1.7 |xn − x∞|
2 ,

where we have again rounded up to get a number that is easier to write.
This inequality may be rewritten as

1.7 |xn+1 − x∞| <
(

1.7 |xn − x∞|
)2

.

Induction on this shows that, if 1.7 |x0 − x∞| < k, then 1.7 |xn − x∞| < k2n
for all n. (Thebasiscase

n = 0 is the definition ofk, and the step fromn to n + 1 follows from the displayed inequality.) This is only
useful ifk < 1, but we will show how to reduce the general case to this special case.

Before proving anything, we should find out what is true. It seems plausible that the extreme values
of a = 0 anda = h(0.3) ≈ 0.985 would take the largest number of steps. Witha = 0, four steps are
required: (start) 2.081575978, (step 1) 3.042386451, (step 2) 3.138766291, (step 3) 3.141590118, (step 4)
3.141592654, which agrees withπ to more than 8 decimal places (the distance toπ at the previous step was
about 2.5 × 10−6). With a = h(0.3), six steps are required: (start) 2.081575978, (step 1) 0.783999428,
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(step 2) 0.4403481391, (step 3).3217480269, (step 4) 0.3007207552, (step 5) 0.3000008468, (step 6)
0.2999999972 (the distance to 0.3 at the last step is about 3×10−9). Roundoff error has made the last value
appear to overshoot the target.

This empirical investigation is all that was expected at this stage. A careful error analysis is more
difficult. The biggest danger is that this analysis will beoversimplified, leading to conclusions that are
too good to be true. You should never put alot of effort into an analysis to conclude that alittle more
computation is unnecessary. Error analysis shouldoverestimate the error to give aneasy proof that a
reasonableeffort will surely give an answer that meets specifications.

These calculations were done in Maple using the default precision of 10 decimal places. Repeating the
calculation with extended precision reveals that the calculation ofh(0.3) gave a value that was slightly too
large, so that the root was slightly smaller than expected.

Now, let’s try to show that we reach the root to within 10−8 in at most 6 steps for anya. Our error

estimate shows that this will be true ifk = 1.7 |x0 − x∞| satisfiesk26
< 10−8. Taking logarithms, this

is equivalent to 64 lnk < −8 ln 10. Thus lnk < −(ln 10)/8 or k < 10−1/8
≈ 0.74989. Taking this

distance on either side of the value ofx0 that we decided to use in all cases shows that six steps suffice for
1.332< x∞ < 2.831. This gives the desired accuracy in six steps for 0.108< a < 0.729

To extend these results, we note that the form of the function iterated in Newton’s method shows that
the result is an increasing function ofa for eachx (becauseh′(x) < 0). Thus, ifa is outside the interval
that we found, one step will take us at least as far as ifa had been 0.108 or 0.729. The resulting values ofx1
are 2.795 (for smalla) and 1.370 (for largea). Then, one needs to see how far one can get from here infive
steps. The value ofk is now determined by 32 lnk < −8 ln 10, ork < 10−1/4

≈ 0.56234. Convergence is
now guaranteed for 0.8074289988< x∞. The calculation of the right endpoint gave a value greater than
that of the interval used to formulate the estimates, so we can only conclude validity for 0≤ a < 0.895
(the latter value being a convenientupward rounding ofh(0.8074289988)). Because of the cautious nature
of the estimates, it may not be possible to use this approach toprove that six steps suffice in all cases.
However, for largea, even if six steps won’t give the answer to the required accuracy,two steps will lead
to x2 < 0.89302 and we have seen that we can solve all relevant equations in six steps from this point. The
solution has thus been guaranteed in a total ofeight steps.

1c Statement A simpler function isf (x) = sinx−ax. This has the disadvantage thatf (0) = 0,
while we are always looking for theother place wheref (x) = 0. Find a method that will guarantee that
the Newton iteration determined by this function will converge tok(a). Find a rule for choosingx0 and
bound on the number of steps of this iteration required to computek(a) to 8 decimal places for alla with
0 ≤ a < 0.985 .

1c Solution For alla, this f (x) is concave downward between 0 andπ with inflection points at
both ends of this interval, and the maximum point lies between 0 and the desired root. A uniform method
of solving the equation is to start withx0 = π . Then, iterating the Newton functionx − f (x)/ f ′(x) gives a
decreasing sequence that converges to the positive root off (x) = 0. Again, we suspect thata = 0.985 will
exhibit the slowest convergence. Calculating gives the sequence:x0 = 3.141592654,x1 = 1.582666325,
x2 = 1.021914236,x3 = 0.6906204033,x4 = 0.4886790201,x5 = 0.3721739656,x6 = 0.3169948089,
x7 = 0.3018505633,x8 = 0.3006856430,x9 = 0.3006788963.

Uniform estimates based on the error estimate for Newton’s method are more difficult to find in this
case because

∣∣ f ′(x)
∣∣ can be smaller than 0.03 fora near 0.985. With a uniform upper bound of

∣∣ f ′′(ξ)
∣∣ ≤ 1,

we have

|xn+1 − x∞| < 16.82|xn − x∞|
2 ,
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16.82|xn+1 − x∞| <
(

16.82|xn − x∞|
)2

.

Thus, the benefits of quadratic convergence are seen only when very close to end of the computation. We
also notice that there is little benefit in modest changes in the choice ofx0 like usingx0 = π/2 for a > 2/π ,
since one or two steps starting fromx0 = π leads to smaller values.

Problem 2 Steffensen’s method, which calls for formingp1 = g(p0) and p2 = g(p1), and
then

p∗ = p0 −
(p1 − p0)

2

p2 − 2p1 + p0

is described asaccelerating convergence.

2a Statement Here is an example of the primary use of Steffensen’s method. If a functionf (x)

has a zero of multiplicity greater than 1, Newton’s method is no longer quadratically convergent. Example
2 in section 2.4 investigates the Newton iteration constructed to find the root of

ex
− x − 1

at x = 0. This is atoy example— you know that the process should converge to zero. The example
suggestslinear convergence. Use Steffensen’s method to produce a quadratically convergent iteration from
the iteration of this example. (Note that the function being iterated isnot shownin the text, so you will need
to construct it.)Show all intermediate stepsin the computation of the Newton function and the Steffensen
function. The accuracy to which those quantities can be computed play a role in the behavior of these
methods.

2a Solution The first step is to findN(x) = x − f (x)/ f ′(x) when f (x) = ex
− x − 1:

N(x) = x −
ex

− x − 1

ex − 1
.

Computations should useN(x) in the form shown, but analysis of its properties may use expressions that
are algebraically equivalent. This allows L’Hôpital’s rule to be used to show that

lim
x→0

N(x)

x
=

1

2

by writing
N(x)

x
=

xex
− ex

+ 1

xex − x
.

(Actually, the use of Taylor’s theorem on the numerator and denominator of this expression is more efficient:

N(x)

x
=

1
2x2

+ O(x3)

x2 + O(x3)

whereO(x3) stands for “terms of degree 3 or more”).
Iterating this function gives values that agree with the table shown in the textbook, and the limit that

was just calculated shows thatN(x) ∼ x/2, confirming the observation that this sequence appears to be
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linearly convergent to zero with ration 1/2. As in the text, we start withp0 = 1. The rows of the following
table showp0, p1, p2 from the application ofN(x), and each new row begins with thep∗ computed from
the triple on the row above.

p0 p1 p2

1. 0.5819767070 0.3190550411
−0.126638558 −0.06198319467 −0.03067145206
−0.0012677701 −0.0006339729082 −0.0003168241544

8.25704× 10−7

IteratingN(x) would divide an entry by 2 to get the next entry in a row. The next Steffensen step may not
be possible because the denominator will be so small that it will look like zero.

2b Statement If the goal is to get accuracy to with 10−6, how many steps will be required using
Newton’s method, and how many steps using the accelerated method? What accuracy would be needed in
each of these computations?

2b Solution In this case, Newton’s method is only linearly convergent with ratio1/2, and we
started at distance 1 form the root, so the distance to the root is 2−n aftern steps. To get 2−n < 10−6 requires
−n ln 2 < −6 ln 10 orn > 6 ln 10/ ln 2 ≈ 19.93156857. Sincen is an integer, it must be at least 20. A
more precise error estimate might require a larger ratio, leading to a few more steps.

2c Statement Under some circumstances, Steffensen’s method is able to turn adivergent
process into a convergent one. Experiment withg(x) = cos(2x) and various choices of starting value.

2c Solution Start with p0 = 0 and construct a table in the same format as in 2a.

p0 p1 p2

0. 2. −0.8322936730
0.8277642608 1.353047788 0.4320637532
1.018546929 1.049207144 0.9965172662
1.029825246 1.029937307 1.029745181
1.029866529 1.029866530 1.029866528
1.029866529

End of Workshop 3
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